dbo:abstract
|
- The Erdős–Nagy theorem is a result in discrete geometry stating that a non-convex simple polygon can be made into a convex polygon by a finite sequence of flips. The flips are defined by taking a convex hull of a polygon and reflecting a pocket with respect to the boundary edge. The theorem is named after mathematicians Paul Erdős and Béla Szőkefalvi-Nagy. (en)
- Теорема Эрдёша — Сёкефальви-Надя — результат в комбинаторной геометрии, согласно которому многоугольник без самопересечений может быть преобразован в выпуклый многоугольник путём конечного числа зеркальных отражений «карманов» — связных компонентов выпуклой оболочки. На каждом шаге определяется выпуклая оболочка многоугольника, и её ребро, относительно которого осуществляется отражение. Конечный многоугольник может иметь параллельные смежные рёбра, то есть быть слабо выпуклым. Помимо отражения, карман может быть преобразован поворотом на 180° относительно центра ребра оболочки. Такое преобразование оказывается более эффективным средством достижения выпуклости многоугольника. Гипотезу сформулировал Пал Эрдёш в 1935 году и опубликовал в журнале American Mathematical Monthly. В 1939 году Сёкефальви-Надь доказал и опубликовал теорему. (ru)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 4049 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
gold:hypernym
| |
rdf:type
| |
rdfs:comment
|
- The Erdős–Nagy theorem is a result in discrete geometry stating that a non-convex simple polygon can be made into a convex polygon by a finite sequence of flips. The flips are defined by taking a convex hull of a polygon and reflecting a pocket with respect to the boundary edge. The theorem is named after mathematicians Paul Erdős and Béla Szőkefalvi-Nagy. (en)
- Теорема Эрдёша — Сёкефальви-Надя — результат в комбинаторной геометрии, согласно которому многоугольник без самопересечений может быть преобразован в выпуклый многоугольник путём конечного числа зеркальных отражений «карманов» — связных компонентов выпуклой оболочки. На каждом шаге определяется выпуклая оболочка многоугольника, и её ребро, относительно которого осуществляется отражение. Конечный многоугольник может иметь параллельные смежные рёбра, то есть быть слабо выпуклым. Помимо отражения, карман может быть преобразован поворотом на 180° относительно центра ребра оболочки. Такое преобразование оказывается более эффективным средством достижения выпуклости многоугольника. (ru)
|
rdfs:label
|
- Erdős–Nagy theorem (en)
- Теорема Эрдёша — Сёкефальви-Надя (ru)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |