An Entity of Type: Abstraction100002137, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

The Erdős–Nagy theorem is a result in discrete geometry stating that a non-convex simple polygon can be made into a convex polygon by a finite sequence of flips. The flips are defined by taking a convex hull of a polygon and reflecting a pocket with respect to the boundary edge. The theorem is named after mathematicians Paul Erdős and Béla Szőkefalvi-Nagy.

Property Value
dbo:abstract
  • The Erdős–Nagy theorem is a result in discrete geometry stating that a non-convex simple polygon can be made into a convex polygon by a finite sequence of flips. The flips are defined by taking a convex hull of a polygon and reflecting a pocket with respect to the boundary edge. The theorem is named after mathematicians Paul Erdős and Béla Szőkefalvi-Nagy. (en)
  • Теорема Эрдёша — Сёкефальви-Надя — результат в комбинаторной геометрии, согласно которому многоугольник без самопересечений может быть преобразован в выпуклый многоугольник путём конечного числа зеркальных отражений «карманов» — связных компонентов выпуклой оболочки. На каждом шаге определяется выпуклая оболочка многоугольника, и её ребро, относительно которого осуществляется отражение. Конечный многоугольник может иметь параллельные смежные рёбра, то есть быть слабо выпуклым. Помимо отражения, карман может быть преобразован поворотом на 180° относительно центра ребра оболочки. Такое преобразование оказывается более эффективным средством достижения выпуклости многоугольника. Гипотезу сформулировал Пал Эрдёш в 1935 году и опубликовал в журнале American Mathematical Monthly. В 1939 году Сёкефальви-Надь доказал и опубликовал теорему. (ru)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 20852937 (xsd:integer)
dbo:wikiPageLength
  • 4049 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1033138287 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • The Erdős–Nagy theorem is a result in discrete geometry stating that a non-convex simple polygon can be made into a convex polygon by a finite sequence of flips. The flips are defined by taking a convex hull of a polygon and reflecting a pocket with respect to the boundary edge. The theorem is named after mathematicians Paul Erdős and Béla Szőkefalvi-Nagy. (en)
  • Теорема Эрдёша — Сёкефальви-Надя — результат в комбинаторной геометрии, согласно которому многоугольник без самопересечений может быть преобразован в выпуклый многоугольник путём конечного числа зеркальных отражений «карманов» — связных компонентов выпуклой оболочки. На каждом шаге определяется выпуклая оболочка многоугольника, и её ребро, относительно которого осуществляется отражение. Конечный многоугольник может иметь параллельные смежные рёбра, то есть быть слабо выпуклым. Помимо отражения, карман может быть преобразован поворотом на 180° относительно центра ребра оболочки. Такое преобразование оказывается более эффективным средством достижения выпуклости многоугольника. (ru)
rdfs:label
  • Erdős–Nagy theorem (en)
  • Теорема Эрдёша — Сёкефальви-Надя (ru)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License