An Entity of Type: Abstraction100002137, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

Correspondence analysis (CA) is a multivariate statistical technique proposed by Herman Otto Hartley (Hirschfeld) and later developed by Jean-Paul Benzécri. It is conceptually similar to principal component analysis, but applies to categorical rather than continuous data. In a similar manner to principal component analysis, it provides a means of displaying or summarising a set of data in two-dimensional graphical form. Its aim is to display in a biplot any structure hidden in the multivariate setting of the data table. As such it is a technique from the field of multivariate ordination. Since the variant of CA described here can be applied either with a focus on the rows or on the columns it should in fact be called simple (symmetric) correspondence analysis.

Property Value
dbo:abstract
• Correspondence analysis (CA) is a multivariate statistical technique proposed by Herman Otto Hartley (Hirschfeld) and later developed by Jean-Paul Benzécri. It is conceptually similar to principal component analysis, but applies to categorical rather than continuous data. In a similar manner to principal component analysis, it provides a means of displaying or summarising a set of data in two-dimensional graphical form. Its aim is to display in a biplot any structure hidden in the multivariate setting of the data table. As such it is a technique from the field of multivariate ordination. Since the variant of CA described here can be applied either with a focus on the rows or on the columns it should in fact be called simple (symmetric) correspondence analysis. It is traditionally applied to the contingency table of a pair of nominal variables where each cell contains either a count or a zero value. If more than two categorical variables are to be summarized, a variant called multiple correspondence analysis should be chosen instead. CA may also be applied to binary data given the presence/absence coding represents simplified count data i.e. a 1 describes a positive count and 0 stands for a count of zero. Depending on the scores used CA preserves the chi-square distance between either the rows or the columns of the table. Because CA is a descriptive technique, it can be applied to tables regardless of a significant chisquared test. Although the statistic used in inferential statistics and the chi-square distance are computationally related they should not be confused since the latter works as a multivariate statistical distance measure in CA while the statistic is in fact a scalar not a metric. (en)
dbo:wikiPageID
• 11594341 (xsd:integer)
dbo:wikiPageLength
• 23092 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
• 1111876010 (xsd:integer)
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
• Correspondence analysis (CA) is a multivariate statistical technique proposed by Herman Otto Hartley (Hirschfeld) and later developed by Jean-Paul Benzécri. It is conceptually similar to principal component analysis, but applies to categorical rather than continuous data. In a similar manner to principal component analysis, it provides a means of displaying or summarising a set of data in two-dimensional graphical form. Its aim is to display in a biplot any structure hidden in the multivariate setting of the data table. As such it is a technique from the field of multivariate ordination. Since the variant of CA described here can be applied either with a focus on the rows or on the columns it should in fact be called simple (symmetric) correspondence analysis. (en)
rdfs:label
• Correspondence analysis (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of