An Entity of Type: book, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

A conformal loop ensemble (CLEκ) is a random collection of non-crossing loops in a simply connected, open subset of the plane. These random collections of loops are indexed by a parameter κ, which may be any real number between 8/3 and 8. CLEκ is a loop version of the Schramm-Loewner evolution: SLEκ is designed to model a single discrete random interface, while CLEκ models a full collection of interfaces. In many instances for which there is a conjectured or proved relationship between a discrete model and SLEκ, there is also a conjectured or proved relationship with CLEκ. For example:

Property Value
dbo:abstract
  • A conformal loop ensemble (CLEκ) is a random collection of non-crossing loops in a simply connected, open subset of the plane. These random collections of loops are indexed by a parameter κ, which may be any real number between 8/3 and 8. CLEκ is a loop version of the Schramm-Loewner evolution: SLEκ is designed to model a single discrete random interface, while CLEκ models a full collection of interfaces. In many instances for which there is a conjectured or proved relationship between a discrete model and SLEκ, there is also a conjectured or proved relationship with CLEκ. For example: * CLE3 is the limit of interfaces for the critical Ising model. * CLE4 may be viewed as the 0-set of the Gaussian free field. * CLE16/3 is a scaling limit of cluster interfaces in critical FK Ising percolation. * CLE6 is a scaling limit of critical percolation on the triangular lattice. (en)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 36356195 (xsd:integer)
dbo:wikiPageLength
  • 4659 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1070621474 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • A conformal loop ensemble (CLEκ) is a random collection of non-crossing loops in a simply connected, open subset of the plane. These random collections of loops are indexed by a parameter κ, which may be any real number between 8/3 and 8. CLEκ is a loop version of the Schramm-Loewner evolution: SLEκ is designed to model a single discrete random interface, while CLEκ models a full collection of interfaces. In many instances for which there is a conjectured or proved relationship between a discrete model and SLEκ, there is also a conjectured or proved relationship with CLEκ. For example: (en)
rdfs:label
  • Conformal loop ensemble (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License