An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, a completely metrizable space (metrically topologically complete space) is a topological space (X, T) for which there exists at least one metric d on X such that (X, d) is a complete metric space and d induces the topology T. The term topologically complete space is employed by some authors as a synonym for completely metrizable space, but sometimes also used for other classes of topological spaces, like completely uniformizable spaces or .

Property Value
dbo:abstract
  • In mathematics, a completely metrizable space (metrically topologically complete space) is a topological space (X, T) for which there exists at least one metric d on X such that (X, d) is a complete metric space and d induces the topology T. The term topologically complete space is employed by some authors as a synonym for completely metrizable space, but sometimes also used for other classes of topological spaces, like completely uniformizable spaces or . (en)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 7975189 (xsd:integer)
dbo:wikiPageLength
  • 6153 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1021994816 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdfs:comment
  • In mathematics, a completely metrizable space (metrically topologically complete space) is a topological space (X, T) for which there exists at least one metric d on X such that (X, d) is a complete metric space and d induces the topology T. The term topologically complete space is employed by some authors as a synonym for completely metrizable space, but sometimes also used for other classes of topological spaces, like completely uniformizable spaces or . (en)
rdfs:label
  • Vollständig metrisierbarer Raum (de)
  • Completely metrizable space (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License