An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, an algebraic stack is a vast generalization of algebraic spaces, or schemes, which are foundational for studying moduli theory. Many moduli spaces are constructed using techniques specific to algebraic stacks, such as Artin's representability theorem, which is used to construct the moduli space of pointed algebraic curves and the moduli stack of elliptic curves. Originally, they were introduced by Grothendieck to keep track of automorphisms on moduli spaces, a technique which allows for treating these moduli spaces as if their underlying schemes or algebraic spaces are smooth. But, through many generalizations the notion of algebraic stacks was finally discovered by Michael Artin.

Property Value
dbo:abstract
  • In mathematics, an algebraic stack is a vast generalization of algebraic spaces, or schemes, which are foundational for studying moduli theory. Many moduli spaces are constructed using techniques specific to algebraic stacks, such as Artin's representability theorem, which is used to construct the moduli space of pointed algebraic curves and the moduli stack of elliptic curves. Originally, they were introduced by Grothendieck to keep track of automorphisms on moduli spaces, a technique which allows for treating these moduli spaces as if their underlying schemes or algebraic spaces are smooth. But, through many generalizations the notion of algebraic stacks was finally discovered by Michael Artin. (en)
  • En mathématiques, un champ algébrique est une catégorie généralisant la notion de schéma ; elle permet notamment l'étude des actions de groupes lorsqu'elles ne sont pas libres. (fr)
  • 代数スタックとは、モジュライ理論の研究の基礎となる代数空間またはスキームの一般化である。多くのモジュライ空間は、アルティンの表現可能定理など、代数スタック固有の手法を駆使して構築される。これは、尖った代数曲線のモジュライ空間の構築に使用される。 は楕円曲線のモジュラススタックで、それらはモジュライ空間の自己同型を追跡するためにはグロタンディークにより導入された。これは、モジュライ空間を基礎とするスキームや代数空間が滑らかであるかのように扱うことを可能とする。多くの一般化を通じ、代数スタックの概念がついにアルティンにより発見された。 (ja)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 717377 (xsd:integer)
dbo:wikiPageLength
  • 23855 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1049748929 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dct:subject
rdf:type
rdfs:comment
  • In mathematics, an algebraic stack is a vast generalization of algebraic spaces, or schemes, which are foundational for studying moduli theory. Many moduli spaces are constructed using techniques specific to algebraic stacks, such as Artin's representability theorem, which is used to construct the moduli space of pointed algebraic curves and the moduli stack of elliptic curves. Originally, they were introduced by Grothendieck to keep track of automorphisms on moduli spaces, a technique which allows for treating these moduli spaces as if their underlying schemes or algebraic spaces are smooth. But, through many generalizations the notion of algebraic stacks was finally discovered by Michael Artin. (en)
  • En mathématiques, un champ algébrique est une catégorie généralisant la notion de schéma ; elle permet notamment l'étude des actions de groupes lorsqu'elles ne sont pas libres. (fr)
  • 代数スタックとは、モジュライ理論の研究の基礎となる代数空間またはスキームの一般化である。多くのモジュライ空間は、アルティンの表現可能定理など、代数スタック固有の手法を駆使して構築される。これは、尖った代数曲線のモジュライ空間の構築に使用される。 は楕円曲線のモジュラススタックで、それらはモジュライ空間の自己同型を追跡するためにはグロタンディークにより導入された。これは、モジュライ空間を基礎とするスキームや代数空間が滑らかであるかのように扱うことを可能とする。多くの一般化を通じ、代数スタックの概念がついにアルティンにより発見された。 (ja)
rdfs:label
  • Algebraic stack (en)
  • Champ algébrique (fr)
  • 代数的スタック (ja)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License