About: Row equivalence     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : dbo:Organisation, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/c/4egVk7kVNm

In linear algebra, two matrices are row equivalent if one can be changed to the other by a sequence of elementary row operations. Alternatively, two m × n matrices are row equivalent if and only if they have the same row space. The concept is most commonly applied to matrices that represent systems of linear equations, in which case two matrices of the same size are row equivalent if and only if the corresponding homogeneous systems have the same set of solutions, or equivalently the matrices have the same null space.

AttributesValues
rdf:type
rdfs:label
  • Matrices l-équivalentes (fr)
  • Row equivalence (en)
rdfs:comment
  • En algèbre linéaire, deux matrices sont l-équivalentes (ou ligne-équivalentes) si on peut passer de l'une à l'autre par des opérations élémentaires sur les lignes. Si A et B sont deux matrices, cette condition se réécrit comme : il existe une matrice inversible tel que . (fr)
  • In linear algebra, two matrices are row equivalent if one can be changed to the other by a sequence of elementary row operations. Alternatively, two m × n matrices are row equivalent if and only if they have the same row space. The concept is most commonly applied to matrices that represent systems of linear equations, in which case two matrices of the same size are row equivalent if and only if the corresponding homogeneous systems have the same set of solutions, or equivalently the matrices have the same null space. (en)
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • En algèbre linéaire, deux matrices sont l-équivalentes (ou ligne-équivalentes) si on peut passer de l'une à l'autre par des opérations élémentaires sur les lignes. Si A et B sont deux matrices, cette condition se réécrit comme : il existe une matrice inversible tel que . (fr)
  • In linear algebra, two matrices are row equivalent if one can be changed to the other by a sequence of elementary row operations. Alternatively, two m × n matrices are row equivalent if and only if they have the same row space. The concept is most commonly applied to matrices that represent systems of linear equations, in which case two matrices of the same size are row equivalent if and only if the corresponding homogeneous systems have the same set of solutions, or equivalently the matrices have the same null space. Because elementary row operations are reversible, row equivalence is an equivalence relation. It is commonly denoted by a tilde (~). There is a similar notion of column equivalence, defined by elementary column operations; two matrices are column equivalent if and only if their transpose matrices are row equivalent. Two rectangular matrices that can be converted into one another allowing both elementary row and column operations are called simply equivalent. (en)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 62 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software