About: Pythagorean triple     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Message106598915, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FPythagorean_triple

A Pythagorean triple consists of three positive integers a, b, and c, such that a2 + b2 = c2. Such a triple is commonly written (a, b, c), and a well-known example is (3, 4, 5). If (a, b, c) is a Pythagorean triple, then so is (ka, kb, kc) for any positive integer k. A primitive Pythagorean triple is one in which a, b and c are coprime (that is, they have no common divisor larger than 1). A triangle whose sides form a Pythagorean triple is called a Pythagorean triangle, and is necessarily a right triangle.

AttributesValues
rdf:type
rdfs:label
  • ثلاثية فيثاغورس
  • Terna pitagòrica
  • Pythagorejská trojice
  • Pythagoreisches Tripel
  • Πυθαγόρεια τριάδα
  • Pitagora triopo
  • Terna pitagórica
  • Pythagorean triple
  • Triplet pythagoricien
  • Terna pitagorica
  • 피타고라스 삼조
  • Trójki pitagorejskie
  • Pythagorese drietallen
  • Terno pitagórico
  • Пифагорова тройка
  • Pythagoreisk trippel
  • Числа Піфагора
  • 勾股数
rdfs:comment
  • تتألف ثلاثية فيثاغورس من الأعداد الصحيحة a و b و c حيث a2 + b2 = c2. تكتب الثلاثية على الشكل (a, b, c) ومن الأمثلة الشهيرة عليها هي (5, 4, 3). إذا كانت (a, b, c) هي ثلاثية فيثاغورسية فإن (ka, kb, kc) من أجل أي عدد صحيح k تكون أيضاً ثلاثية فيثاغورسية. تكون الأعداد المشكلة لثلاثية فيثاغورس a, b و c أولية فيما بينها. تم أخذ الاسم من مبرهنة فيثاغورس حيث تكون كل ثلاثية فيثاغورس حلاً لمبرهنة فيثاغورس.
  • En matemàtiques, especialment dins la teoria dels nombres, una terna pitagòrica és formada per tres nombres naturals a, b i c tals que a²+b²=c². Si (a,b,c) és una terna pitagòrica, aleshores (ka,kb,kc) també és una terna pitagòrica, per a qualsevol nombre natural k. En una terna pitagòrica primitiva els tres nombres són primers entre si. Les primeres ternes pitagòriques primitives són (3, 4, 5), (5, 12, 13), (7, 24, 25), (8, 15, 17), (9, 40, 41), (11, 60, 61), (12, 35, 37), (13, 84, 85), (16, 63, 65), (20, 21, 29)...
  • Pythagorejská trojice je trojice přirozených čísel a,b,c takových, že . Název pythagorejská trojice je odvozen od Pythagorovy věty, která uvádí podobný vztah pro strany pravoúhlého trujúhelníka.
  • Μια πυθαγόρεια τριάδα αποτελείται από τρεις θετικούς ακέραιους αριθμούς α, β, και γ, τέτοιοι ώστε να ισχύει η σχέση α2 + β2 = γ2, ευρέως γνωστή ως πυθαγόρειο θεώρημα. Μια τέτοια τριάδα συνήθως γράφεται (α, β, γ), και ένα χαρακτηριστικό παράδειγμα αποτελούν οι αριθμοί (3, 4, 5) εφόσον ισχύει . Εάν (α, β, γ) είναι πυθαγόρεια τριάδα, τότε ομοίως θα είναι και η (κα, κβ, κγ) για οποιοδήποτε θετικό ακέραιο κ. Μια πρωτογενής πυθαγόρεια τριάδα είναι αυτή για την οποία οι α,β,γ είναι πρώτοι μεταξύ τους (δηλαδή ο μέγιστος κοινός διαιρέτης των α,β,γ είναι 1).
  • Una terna pitagórica es un conjunto ordenado de tres números enteros positivos a, b, c, y son solución de la ecuación diofantina cuadrática ​. La nomenclatura se liga al teorema de Pitágoras, el cual afirma que en cualquier triángulo rectángulo, se cumple que (donde t es la longitud de la hipotenusa; y las otras variables , longitudes de catetos, en números enteros). En sentido recíproco también se cumple, o sea, cualquier terna pitagórica se puede asociar con las longitudes de los dos catetos y de la hipotenusa correspondiente, formando un triángulo rectángulo.
  • En arithmétique, un triplet pythagoricien est un triplet (x, y, z) d'entiers naturels non nuls vérifiant la relation de Pythagore : x2 + y2 = z2.
  • 수학에서, 피타고라스 삼조(Πυθαγόρας三組, 영어: Pythagorean triple)는 피타고라스 정리에 등장하는 등식 을 만족시키는 세 양의 정수의 튜플 이다. 즉, 유클리드 기하학의 직각 삼각형의 세 변을 이루는 세 양의 정수의 튜플이다. 예를 들어, 는 피타고라스 삼조이다. 원시 피타고라스 삼조(原始Πυθαγόρας三組, 영어: primitive Pythagorean triple)는 피타고라스 삼조를 이루는 세 수가 서로소인 경우이다. 모든 피타고라스 삼조는 원시 피타고라스 삼조의 배수로 나타낼 수 있다. 피타고라스 삼조는 의 양의 유리수 해와 일대일 대응하며, 단위원 위의 양의 유리수 점과 일대일 대응한다.
  • Trójka pitagorejska (albo liczby pitagorejskie) – trzy liczby całkowite dodatnie spełniające tzw. równanie Pitagorasa: Ich nazwa pochodzi od twierdzenia Pitagorasa, na mocy którego boki trójkąta prostokątnego spełniają powyższą zależność. W poniższej tabeli przedstawiono kilka pierwszych (względem krótszej przyprostokątnej) trójek pitagorejskich:
  • Пифаго́рова тро́йка — упорядоченный набор из трёх натуральных чисел удовлетворяющих следующему однородному квадратному уравнению: При этом числа, образующие пифагорову тройку, называются пифагоровыми числами. Названы в честь Пифагора Самосского, хотя открыты задолго до него.
  • 勾股数,又名商高數或毕氏数(Pythagorean triple),是由三个正整数组成的数组;能符合勾股定理(毕式定理)「」之中,的正整数解。而且,基于勾股定理的逆定理,任何边长是勾股数组的三角形都是直角三角形。 如果是勾股数,它们的正整数倍数,也是勾股数,即也是勾股数。若果三者互质(它们的最大公因数是 1),它们就称为素勾股数。
  • In der Zahlentheorie wird ein pythagoreisches Tripel oder pythagoreisches Zahlentripel von drei natürlichen Zahlen gebildet, die als Längen der Seiten eines rechtwinkeligen Dreiecks vorkommen können. Sie finden sich bereits auf babylonischen Tontafeln, die in die Zeit der Hammurabi-Dynastie datiert werden (1829 bis 1530 v. Chr). Die Keilschrifttafel Plimpton 322 enthält 15 verschiedene pythagoreische Tripel, u. a. , und , was darauf schließen lässt, dass bereits vor mehr als 3500 Jahren ein Verfahren zur Berechnung solcher Tripel bekannt war. Für Ägypten ist die explizite Erwähnung von pythagoreischen Tripeln nur aus einem demotischen Papyrus des 3. Jahrhunderts v. Chr. bekannt, doch wurde auch die Verwendung insbesondere der Tripel und für Böschungswinkel bei einigen Pyramiden aus eine
  • A Pythagorean triple consists of three positive integers a, b, and c, such that a2 + b2 = c2. Such a triple is commonly written (a, b, c), and a well-known example is (3, 4, 5). If (a, b, c) is a Pythagorean triple, then so is (ka, kb, kc) for any positive integer k. A primitive Pythagorean triple is one in which a, b and c are coprime (that is, they have no common divisor larger than 1). A triangle whose sides form a Pythagorean triple is called a Pythagorean triangle, and is necessarily a right triangle.
  • Pitagora triopo estas en la nombroteorio ĉia grupo de tri naturaj nombroj, kiu povas esti flankoj de orta triangulo. Traktis ilin jam Diofanto el Aleksandrio. Pro la teoremo de Pitagoro ili estas la pozitivaj solvoj de la diofanta ekvacio: Se x,y,z estas mallongigita, t.e., se ili ne havas komunan divizoron, oni nomas ilin primitiva pitagora triopo. Je ĉia primitiva triopo z estas nepara, kaj el la nombroj x kaj y unu estas para, la alia nepara. Ekzemploj:
  • Una terna pitagorica è una terna di numeri naturali , , tali che . Il nome viene dal teorema di Pitagora, da cui discende che ad ogni triangolo rettangolo con lati interi corrisponde una terna pitagorica e viceversa. Se è una terna pitagorica, lo è anche , dove è un numero naturale qualsiasi. Il numero è quindi un divisore comune dei tre numeri , , . Una terna pitagorica si dice primitiva se , e non hanno divisori comuni. I triangoli descritti da terne pitagoriche non primitive sono sempre simili a quelli descritti dalla corrispondente terna primitiva. Eccone altre: . e
  • Een pythagorees drietal (a, b, c) bestaat uit drie positieve gehele getallen a, b, c waarvoor geldt a2 + b2= c2. De naam komt van de stelling van Pythagoras, aangezien dergelijke getallen kunnen optreden als de zijden van een rechthoekige driehoek met c als lengte van de schuine zijde. De oppervlakte van een dergelijke rechthoekige driehoek is dan een congruent getal. Naast het drietal (3,4,5) vormen ook veelvouden hiervan, zoals (6,8,10) en (9,12,15) pythagorese drietallen. Met (a,b,c) is ook (ka,kb,kc) voor elk positief geheel getal k een pythagorees drietal.
  • Em matemática, nomeadamente em teoria dos números, um terno pitagórico (ou trio pitagórico, ou ainda tripla pitagórica) é formado por três números naturais a, b e c tais que a²+b²=c². O nome vem do teorema de Pitágoras que afirma que se as medidas dos lados de um triângulo rectângulo são números inteiros, então são um terno pitagórico. Se (a,b,c) é um terno pitagórico, então (ka,kb,kc) também é um terno pitagórico, para qualquer número natural k. Um terno pitagórico primitivo é um terno pitagórico em que os três números são primos entre si. Os primeiros ternos pitagóricos primitivos são (3, 4, 5), (5, 12, 13), (7, 24, 25), (8, 15, 17), (9, 40, 41), (11, 60, 61), (12, 35, 37), (13, 84, 85), (16, 63, 65), (20, 21, 29)...
  • En pythagoreisk trippel är inom talteorin tre positiva heltal x, y och z som uppfyller den diofantiska ekvationen x2 + y2 = z2. Sådana tal motsvaras av längderna på sidorna i en rätvinklig triangel eftersom de uppfyller villkoren i Pythagoras sats. 3, 4 och 5 är exempelvis en sådan taltrippel. En triangel med dessa sidolängder kallas för en egyptisk triangel. Alla pythagoreiska tal kan fås med hjälp av formlerna x = k(m2 - n2)y = 2kmn z = k(m2 + n2) där k, m och n är positiva heltal och där m > n Om k = 1 och m och n är relativt prima och båda inte är udda, så är den bildade trippeln primitiv.
  • Числа Піфагора (піфагорова трійка) складаються з трьох натуральних чисел a, b і c, таких що a2 + b2 = c2. Ці числа зазвичай записують в такому вигляді (a, b, c), і найвідоміший приклад (3, 4, 5). Якщо (a, b, c) числа Піфагора, тоді і (ka, kb, kc) також для будь-якого цілого додатнього k. Примітивними Піфагоровими числами називають взаємно прості a, b й c.
foaf:depiction
  • External Image
foaf:isPrimaryTopicOf
thumbnail
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git51 as of Sep 16 2020


Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3319 as of Dec 29 2020, on Linux (x86_64-centos_6-linux-glibc2.12), Single-Server Edition (61 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2021 OpenLink Software