About: Isotropic coordinates     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Whole100003553, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FIsotropic_coordinates&graph=http%3A%2F%2Fdbpedia.org&graph=http%3A%2F%2Fdbpedia.org

In the theory of Lorentzian manifolds, spherically symmetric spacetimes admit a family of nested round spheres. There are several different types of coordinate chart which are adapted to this family of nested spheres; the best known is the Schwarzschild chart, but the isotropic chart is also often useful.The defining characteristic of an isotropic chart is that its radial coordinate (which is different from the radial coordinate of a Schwarzschild chart) is defined so that light cones appear round. This means that (except in the trivial case of a locally flat manifold), the angular isotropic coordinates do not faithfully represent distances within the nested spheres, nor does the radial coordinate faithfully represent radial distances. On the other hand, angles in the constant time hypersl

AttributesValues
rdf:type
rdfs:label
  • Isotropic coordinates (en)
  • 等方座標 (ja)
rdfs:comment
  • ローレンツ多様体理論において、には一連の入れ子球面構造 (family of nested round spheres) を見出すことができる。この一連の入れ子球面にどのような座標チャートを適用するかにはいくつかの異る型が存在する。最も知られているのはであるが、等方チャートが便利であることも多い。等方チャートの決定的な特徴は、その動径座標(シュワルツシルトチャートにおける動径座標とは異なる)が光円錐が「丸まる」ように定義されていることである。このことは、(自明な局所的に平坦な場合を除いて)等方座標の角度座標は入れ子球面上の距離を忠実に表わしているわけではなく、動径座標も動径距離を忠実に表わしているわけではないことを意味する。一方で、一定座標時における超断面上の角度は歪みなく表現されており、名前の由来となっている。 等方座標は、一般相対性理論などのにおいて球対称時空に対して用いられることが多いが、脈動する流体球のモデリングなどに利用することもできる。孤立したアインシュタイン方程式の球対称解の場合、中心から十分離れれば等方チャートとシュワルツシルトチャートとはいずれもミンコフスキー時空における通常の極座標に漸近する。 (ja)
  • In the theory of Lorentzian manifolds, spherically symmetric spacetimes admit a family of nested round spheres. There are several different types of coordinate chart which are adapted to this family of nested spheres; the best known is the Schwarzschild chart, but the isotropic chart is also often useful.The defining characteristic of an isotropic chart is that its radial coordinate (which is different from the radial coordinate of a Schwarzschild chart) is defined so that light cones appear round. This means that (except in the trivial case of a locally flat manifold), the angular isotropic coordinates do not faithfully represent distances within the nested spheres, nor does the radial coordinate faithfully represent radial distances. On the other hand, angles in the constant time hypersl (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In the theory of Lorentzian manifolds, spherically symmetric spacetimes admit a family of nested round spheres. There are several different types of coordinate chart which are adapted to this family of nested spheres; the best known is the Schwarzschild chart, but the isotropic chart is also often useful.The defining characteristic of an isotropic chart is that its radial coordinate (which is different from the radial coordinate of a Schwarzschild chart) is defined so that light cones appear round. This means that (except in the trivial case of a locally flat manifold), the angular isotropic coordinates do not faithfully represent distances within the nested spheres, nor does the radial coordinate faithfully represent radial distances. On the other hand, angles in the constant time hyperslices are represented without distortion, hence the name of the chart. Isotropic charts are most often applied to static spherically symmetric spacetimes in such as general relativity, but they can also be used in modeling a spherically pulsating fluid ball, for example. For isolated spherically symmetric solutions of the Einstein field equation, at large distances, the isotropic and Schwarzschild charts become increasingly similar to the usual polar spherical chart on Minkowski spacetime. (en)
  • ローレンツ多様体理論において、には一連の入れ子球面構造 (family of nested round spheres) を見出すことができる。この一連の入れ子球面にどのような座標チャートを適用するかにはいくつかの異る型が存在する。最も知られているのはであるが、等方チャートが便利であることも多い。等方チャートの決定的な特徴は、その動径座標(シュワルツシルトチャートにおける動径座標とは異なる)が光円錐が「丸まる」ように定義されていることである。このことは、(自明な局所的に平坦な場合を除いて)等方座標の角度座標は入れ子球面上の距離を忠実に表わしているわけではなく、動径座標も動径距離を忠実に表わしているわけではないことを意味する。一方で、一定座標時における超断面上の角度は歪みなく表現されており、名前の由来となっている。 等方座標は、一般相対性理論などのにおいて球対称時空に対して用いられることが多いが、脈動する流体球のモデリングなどに利用することもできる。孤立したアインシュタイン方程式の球対称解の場合、中心から十分離れれば等方チャートとシュワルツシルトチャートとはいずれもミンコフスキー時空における通常の極座標に漸近する。 (ja)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (62 GB total memory, 54 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software