In geometry, a hypercone (or spherical cone) is the figure in the 4-dimensional Euclidean space represented by the equation It is a quadric surface, and is one of the possible 3-manifolds which are 4-dimensional equivalents of the conical surface in 3 dimensions. It is also named "spherical cone" because its intersections with hyperplanes perpendicular to the w-axis are spheres. A four-dimensional right hypercone can be thought of as a sphere which expands with time, starting its expansion from a single point source, such that the center of the expanding sphere remains fixed. An oblique hypercone would be a sphere which expands with time, again starting its expansion from a point source, but such that the center of the expanding sphere moves with a uniform velocity.
Attributes | Values |
---|
rdf:type
| |
rdfs:label
| - Hypercone (en)
- Гиперконус (ru)
|
rdfs:comment
| - In geometry, a hypercone (or spherical cone) is the figure in the 4-dimensional Euclidean space represented by the equation It is a quadric surface, and is one of the possible 3-manifolds which are 4-dimensional equivalents of the conical surface in 3 dimensions. It is also named "spherical cone" because its intersections with hyperplanes perpendicular to the w-axis are spheres. A four-dimensional right hypercone can be thought of as a sphere which expands with time, starting its expansion from a single point source, such that the center of the expanding sphere remains fixed. An oblique hypercone would be a sphere which expands with time, again starting its expansion from a point source, but such that the center of the expanding sphere moves with a uniform velocity. (en)
- Гиперконус (англ. Hypercone) — четырёхмерная фигура, образованная следующим образом. В четырёхмерной системе координат ставим точку А. Затем рисуем шар с центром в точке В, так чтобы прямая АВ была перпендикулярна шару. Из каждой точки шара проводим отрезок в точку A. Из полученных отрезков вырождается фигура — гиперконус. А — его вершина, В — его основание. Его гиперобъем: (ru)
|
foaf:depiction
| |
dcterms:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
sameAs
| |
dbp:wikiPageUsesTemplate
| |
thumbnail
| |
has abstract
| - In geometry, a hypercone (or spherical cone) is the figure in the 4-dimensional Euclidean space represented by the equation It is a quadric surface, and is one of the possible 3-manifolds which are 4-dimensional equivalents of the conical surface in 3 dimensions. It is also named "spherical cone" because its intersections with hyperplanes perpendicular to the w-axis are spheres. A four-dimensional right hypercone can be thought of as a sphere which expands with time, starting its expansion from a single point source, such that the center of the expanding sphere remains fixed. An oblique hypercone would be a sphere which expands with time, again starting its expansion from a point source, but such that the center of the expanding sphere moves with a uniform velocity. (en)
- Гиперконус (англ. Hypercone) — четырёхмерная фигура, образованная следующим образом. В четырёхмерной системе координат ставим точку А. Затем рисуем шар с центром в точке В, так чтобы прямая АВ была перпендикулярна шару. Из каждой точки шара проводим отрезок в точку A. Из полученных отрезков вырождается фигура — гиперконус. А — его вершина, В — его основание. Его гиперобъем: (ru)
|
prov:wasDerivedFrom
| |
page length (characters) of wiki page
| |
foaf:isPrimaryTopicOf
| |
is Link from a Wikipage to another Wikipage
of | |
is foaf:primaryTopic
of | |