About: Geometric hashing     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Structure105726345, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FGeometric_hashing

In computer science, geometric hashing is a method for efficiently finding two-dimensional objects represented by discrete points that have undergone an affine transformation, though extensions exist to other object representations and transformations. In an off-line step, the objects are encoded by treating each pair of points as a geometric basis. The remaining points can be represented in an invariant fashion with respect to this basis using two parameters. For each point, its quantized transformed coordinates are stored in the hash table as a key, and indices of the basis points as a value. Then a new pair of basis points is selected, and the process is repeated. In the on-line (recognition) step, randomly selected pairs of data points are considered as candidate bases. For each candid

AttributesValues
rdf:type
rdfs:label
  • التجزئة الهندسية (ar)
  • Geometric hashing (en)
rdfs:comment
  • في علوم الحاسوب، تعد التجزئة الهندسية طريقة فعالة لإيجاد كائنات ثنائية الأبعاد ممثلة بنقاط منفصلة خضعت لعملية تحويل تآلفي، على الرغم من وجود امتدادات لتمثيلات وتحولات الكائنات الأخرى. في خطوة خارج الخط، يتم تشفير الكائنات عن طريق معالجة كل زوج من النقاط كاساس هندسي. يمكن تمثيل النقاط المتبقية بطريقة ثابتة فيما يتعلق بهذا الأساس باستخدام عامل متغير في التجزئة. لكل نقطة، يتم تخزين إحداثياتها المحولة الكمية في جدول التجزئة كمفتاح، ومؤشرات نقاط الأساس كقيمة. ثم يتم تحديد زوج جديد من النقاط الأساسية، وتتكرر العملية من جديد. في خطوة التعرف عبر الإنترنت، يتم اعتبار أزواج نقاط البيانات المختارة عشوائيًا كقواعد مرشحة. لكل أساس مرشح، يتم ترميز نقاط البيانات المتبقية وفقًا للأساس ويتم العثور على المراسلات المحتملة من الكائن في الجدول الذي تم إنشاؤه مسبقًا. يتم قبول أساس المرشح إذا كان عدد كبير بما في (ar)
  • In computer science, geometric hashing is a method for efficiently finding two-dimensional objects represented by discrete points that have undergone an affine transformation, though extensions exist to other object representations and transformations. In an off-line step, the objects are encoded by treating each pair of points as a geometric basis. The remaining points can be represented in an invariant fashion with respect to this basis using two parameters. For each point, its quantized transformed coordinates are stored in the hash table as a key, and indices of the basis points as a value. Then a new pair of basis points is selected, and the process is repeated. In the on-line (recognition) step, randomly selected pairs of data points are considered as candidate bases. For each candid (en)
differentFrom
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/GeometricHasingExample.png
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
thumbnail
has abstract
  • في علوم الحاسوب، تعد التجزئة الهندسية طريقة فعالة لإيجاد كائنات ثنائية الأبعاد ممثلة بنقاط منفصلة خضعت لعملية تحويل تآلفي، على الرغم من وجود امتدادات لتمثيلات وتحولات الكائنات الأخرى. في خطوة خارج الخط، يتم تشفير الكائنات عن طريق معالجة كل زوج من النقاط كاساس هندسي. يمكن تمثيل النقاط المتبقية بطريقة ثابتة فيما يتعلق بهذا الأساس باستخدام عامل متغير في التجزئة. لكل نقطة، يتم تخزين إحداثياتها المحولة الكمية في جدول التجزئة كمفتاح، ومؤشرات نقاط الأساس كقيمة. ثم يتم تحديد زوج جديد من النقاط الأساسية، وتتكرر العملية من جديد. في خطوة التعرف عبر الإنترنت، يتم اعتبار أزواج نقاط البيانات المختارة عشوائيًا كقواعد مرشحة. لكل أساس مرشح، يتم ترميز نقاط البيانات المتبقية وفقًا للأساس ويتم العثور على المراسلات المحتملة من الكائن في الجدول الذي تم إنشاؤه مسبقًا. يتم قبول أساس المرشح إذا كان عدد كبير بما فيه الكفاية من نقاط البيانات مؤشرًا على أساس كائن ثابت. تم اقتراح التجزئة الهندسية في الأصل في الرؤية الحاسوبية للتعرف على الأشياء ثنائية وثلاثية الأبعاد، ولكن تم تطبيقها لاحقًا على مشاكل مختلفة مثل التراصف البنيوي للبروتينات. (ar)
  • In computer science, geometric hashing is a method for efficiently finding two-dimensional objects represented by discrete points that have undergone an affine transformation, though extensions exist to other object representations and transformations. In an off-line step, the objects are encoded by treating each pair of points as a geometric basis. The remaining points can be represented in an invariant fashion with respect to this basis using two parameters. For each point, its quantized transformed coordinates are stored in the hash table as a key, and indices of the basis points as a value. Then a new pair of basis points is selected, and the process is repeated. In the on-line (recognition) step, randomly selected pairs of data points are considered as candidate bases. For each candidate basis, the remaining data points are encoded according to the basis and possible correspondences from the object are found in the previously constructed table. The candidate basis is accepted if a sufficiently large number of the data points index a consistent object basis. Geometric hashing was originally suggested in computer vision for object recognition in 2D and 3D, but later was applied to different problems such as structural alignment of proteins. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (61 GB total memory, 40 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software