An Entity of Type : yago:Happening107283608, within Data Space : dbpedia.org associated with source document(s)

In combinatorial mathematics, an alternating permutation (or zigzag permutation) of the set {1, 2, 3, ..., n} is a permutation (arrangement) of those numbers so that each entry is alternately greater or less than the preceding entry. For example, the five alternating permutations of {1, 2, 3, 4} are: * 1, 3, 2, 4 because 1 < 3 > 2 < 4, * 1, 4, 2, 3 because 1 < 4 > 2 < 3, * 2, 3, 1, 4 because 2 < 3 > 1 < 4, * 2, 4, 1, 3 because 2 < 4 > 1 < 3, and * 3, 4, 1, 2 because 3 < 4 > 1 < 2.

AttributesValues
rdf:type
rdfs:label
• Alternating permutation
rdfs:comment
• In combinatorial mathematics, an alternating permutation (or zigzag permutation) of the set {1, 2, 3, ..., n} is a permutation (arrangement) of those numbers so that each entry is alternately greater or less than the preceding entry. For example, the five alternating permutations of {1, 2, 3, 4} are: * 1, 3, 2, 4 because 1 < 3 > 2 < 4, * 1, 4, 2, 3 because 1 < 4 > 2 < 3, * 2, 3, 1, 4 because 2 < 3 > 1 < 4, * 2, 4, 1, 3 because 2 < 4 > 1 < 3, and * 3, 4, 1, 2 because 3 < 4 > 1 < 2.
foaf:isPrimaryTopicOf
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
bot
• InternetArchiveBot
date
• September 2019
fix-attempted
• yes
title
• Alternating Permutation
urlname
• AlternatingPermutation
has abstract
• In combinatorial mathematics, an alternating permutation (or zigzag permutation) of the set {1, 2, 3, ..., n} is a permutation (arrangement) of those numbers so that each entry is alternately greater or less than the preceding entry. For example, the five alternating permutations of {1, 2, 3, 4} are: * 1, 3, 2, 4 because 1 < 3 > 2 < 4, * 1, 4, 2, 3 because 1 < 4 > 2 < 3, * 2, 3, 1, 4 because 2 < 3 > 1 < 4, * 2, 4, 1, 3 because 2 < 4 > 1 < 3, and * 3, 4, 1, 2 because 3 < 4 > 1 < 2. This type of permutation was first studied by Désiré André in the 19th century. Different authors use the term alternating permutation slightly differently: some require that the second entry in an alternating permutation should be larger than the first (as in the examples above), others require that the alternation should be reversed (so that the second entry is smaller than the first, then the third larger than the second, and so on), while others call both types by the name alternating permutation. The determination of the number An of alternating permutations of the set {1, ..., n} is called André's problem. The numbers An are known as Euler numbers, zigzag numbers, or up/down numbers. When n is even the number An is known as a secant number, while if n is odd it is known as a tangent number. These latter names come from the study of the generating function for the sequence.
prov:wasDerivedFrom
page length (characters) of wiki page
is foaf:primaryTopic of
is Link from a Wikipage to another Wikipage of
Faceted Search & Find service v1.17_git51 as of Sep 16 2020

Alternative Linked Data Documents: PivotViewer | iSPARQL | ODE     Content Formats:       RDF       ODATA       Microdata      About

OpenLink Virtuoso version 08.03.3319 as of Dec 29 2020, on Linux (x86_64-centos_6-linux-glibc2.12), Single-Server Edition (61 GB total memory)