About: Nevanlinna theory     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : dbo:Organisation, within Data Space : dbpedia.org associated with source document(s)
QRcode icon
http://dbpedia.org/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FValue_distribution_theory_of_holomorphic_functions

In mathematics, the value distribution theory of holomorphic functions is a division of mathematical analysis. It tries to get quantitative measures of the number of times a function f(z) assumes a value a, as z grows in size, refining the Picard theorem on behaviour close to an essential singularity. The theory exists for analytic functions (and meromorphic functions) of one complex variable z, or of several complex variables. * v * t * e

AttributesValues
rdf:type
rdfs:label
  • Value distribution theory of holomorphic functions (en)
rdfs:comment
  • In mathematics, the value distribution theory of holomorphic functions is a division of mathematical analysis. It tries to get quantitative measures of the number of times a function f(z) assumes a value a, as z grows in size, refining the Picard theorem on behaviour close to an essential singularity. The theory exists for analytic functions (and meromorphic functions) of one complex variable z, or of several complex variables. * v * t * e (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In mathematics, the value distribution theory of holomorphic functions is a division of mathematical analysis. It tries to get quantitative measures of the number of times a function f(z) assumes a value a, as z grows in size, refining the Picard theorem on behaviour close to an essential singularity. The theory exists for analytic functions (and meromorphic functions) of one complex variable z, or of several complex variables. In the case of one variable the term Nevanlinna theory, after Rolf Nevanlinna, is also common. The now-classical theory received renewed interest, when Paul Vojta suggested some analogies with the problem of integral solutions to Diophantine equations. These turned out to involve some close parallels, and to lead to fresh points of view on the Mordell conjecture and related questions. * v * t * e (en)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Feb 27 2025, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (61 GB total memory, 59 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software