In the study of differential equations, the Loewy decomposition breaks every linear ordinary differential equation (ODE) into what are called largest completely reducible components. It was introduced by Alfred Loewy. Loewy's results have been extended to linear partial differential equations (PDEs) in two independent variables. In this way, algorithmic methods for solving large classes of linear PDEs have become available.
Attributes | Values |
---|
rdf:type
| |
rdfs:label
| |
rdfs:comment
| - In the study of differential equations, the Loewy decomposition breaks every linear ordinary differential equation (ODE) into what are called largest completely reducible components. It was introduced by Alfred Loewy. Loewy's results have been extended to linear partial differential equations (PDEs) in two independent variables. In this way, algorithmic methods for solving large classes of linear PDEs have become available. (en)
|
name
| |
dcterms:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
sameAs
| |
dbp:wikiPageUsesTemplate
| |
has abstract
| - In the study of differential equations, the Loewy decomposition breaks every linear ordinary differential equation (ODE) into what are called largest completely reducible components. It was introduced by Alfred Loewy. Solving differential equations is one of the most important subfields in mathematics. Of particular interest are solutions in closed form. Breaking ODEs into largest irreducible components, reduces the process of solving the original equation to solving irreducible equations of lowest possible order. This procedure is algorithmic, so that the best possible answer for solving a reducible equation is guaranteed. A detailed discussion may be found in. Loewy's results have been extended to linear partial differential equations (PDEs) in two independent variables. In this way, algorithmic methods for solving large classes of linear PDEs have become available. (en)
|
math statement
| - Let be a derivative and . A differential operator
of order may be written uniquely as the product of completely reducible factors of maximal order over in the form
with . The factors are unique. Any factor , may be written as
with ; for , denotes an irreducible operator of order over . (en)
|
prov:wasDerivedFrom
| |
page length (characters) of wiki page
| |
foaf:isPrimaryTopicOf
| |
is Link from a Wikipage to another Wikipage
of | |
is Wikipage redirect
of | |
is foaf:primaryTopic
of | |