In mathematics, a locally profinite group is a Hausdorff topological group in which every neighborhood of the identity element contains a compact open subgroup. Equivalently, a locally profinite group is a topological group that is Hausdorff, locally compact, and totally disconnected. Moreover, a locally profinite group is compact if and only if it is profinite; this explains the terminology. Basic examples of locally profinite groups are discrete groups and the p-adic Lie groups. Non-examples are real Lie groups, which have the no small subgroup property.
Attributes | Values |
---|
rdf:type
| |
rdfs:label
| - Lokal proendliche Gruppe (de)
- Locally profinite group (en)
|
rdfs:comment
| - Eine lokal proendliche Gruppe ist eine topologische Gruppe, die eine proendliche offene Untergruppe hat. Für lokal proendliche Gruppen können definiert werden. (de)
- In mathematics, a locally profinite group is a Hausdorff topological group in which every neighborhood of the identity element contains a compact open subgroup. Equivalently, a locally profinite group is a topological group that is Hausdorff, locally compact, and totally disconnected. Moreover, a locally profinite group is compact if and only if it is profinite; this explains the terminology. Basic examples of locally profinite groups are discrete groups and the p-adic Lie groups. Non-examples are real Lie groups, which have the no small subgroup property. (en)
|
rdfs:seeAlso
| |
dcterms:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
Link from a Wikipage to an external page
| |
sameAs
| |
dbp:wikiPageUsesTemplate
| |
has abstract
| - Eine lokal proendliche Gruppe ist eine topologische Gruppe, die eine proendliche offene Untergruppe hat. Für lokal proendliche Gruppen können definiert werden. (de)
- In mathematics, a locally profinite group is a Hausdorff topological group in which every neighborhood of the identity element contains a compact open subgroup. Equivalently, a locally profinite group is a topological group that is Hausdorff, locally compact, and totally disconnected. Moreover, a locally profinite group is compact if and only if it is profinite; this explains the terminology. Basic examples of locally profinite groups are discrete groups and the p-adic Lie groups. Non-examples are real Lie groups, which have the no small subgroup property. In a locally profinite group, a closed subgroup is locally profinite, and every compact subgroup is contained in an open compact subgroup. (en)
|
gold:hypernym
| |
prov:wasDerivedFrom
| |
page length (characters) of wiki page
| |
foaf:isPrimaryTopicOf
| |
is Link from a Wikipage to another Wikipage
of | |
is Wikipage redirect
of | |
is foaf:primaryTopic
of | |