In economics, discrete choice models, or qualitative choice models, describe, explain, and predict choices between two or more discrete alternatives, such as entering or not entering the labor market, or choosing between modes of transport. Such choices contrast with standard consumption models in which the quantity of each good consumed is assumed to be a continuous variable. In the continuous case, calculus methods (e.g. first-order conditions) can be used to determine the optimum amount chosen, and demand can be modeled empirically using regression analysis. On the other hand, discrete choice analysis examines situations in which the potential outcomes are discrete, such that the optimum is not characterized by standard first-order conditions. Thus, instead of examining "how much" as in
Attributes | Values |
---|
rdf:type
| |
rdfs:label
| - Choice Experiment (de)
- Discrete choice (en)
- Escolha discreta (pt)
- Дискретный выбор (ru)
- 离散选择法 (zh)
- Дискретний вибір (uk)
|
rdfs:comment
| - Na economia, os modelos de escolha discreta, ou modelo de escolha qualitativa, descrevem, explicam e predizem escolhas entre duas ou mais escolhas discretas, tais como entrar ou não no mercado laboral ou escolher entre meios de transporte. Tais escolhas contrastam cos modelos de consumo estândar nos quais a quantidade que cada bem consumido é assumida como uma variável contínua. Transformando referencias em usos pré-definidos. (pt)
- Модели дискретного выбора — экономические (эконометрические) модели, позволяющие описывать, объяснять и прогнозировать выбор между, двумя или более альтернативами (то есть когда множество альтернатив не более чем счетно). Модели дискретного выбора позволяют на основе некоторых характеристик (атрибутов) экономического субъекта или ситуации оценить вероятность выбора той или иной альтернативы. (ru)
- 离散选择法(Discrete choice approach,缩写DCA,也作Discrete choice model,即“离散选择模型”)属于多重变量分析的方法之一,是社会学、生物统计学、、市场营销等统计实证分析的常用方法。 (zh)
- Choice Experiment bzw. Discrete Choice Experiment (deutsch: Diskretes Entscheidungsexperiment oder Diskretes Auswahlexperiment) ist eine Auswahl- bzw. entscheidungsbasierte Methode zur Analyse von ökonomischen Präferenzen. Es können sozialwissenschaftliche Befragungsdaten über hypothetische Auswahlen (geäußerte Präferenzen; Choice Experiment im engeren Sinn) oder Daten über reale Auswahlen (offenbarte Präferenzen) analysiert werden. Die statistischen (ökonometrischen) Ansätze bezeichnet man dabei als diskrete Entscheidungsmodelle. (de)
- In economics, discrete choice models, or qualitative choice models, describe, explain, and predict choices between two or more discrete alternatives, such as entering or not entering the labor market, or choosing between modes of transport. Such choices contrast with standard consumption models in which the quantity of each good consumed is assumed to be a continuous variable. In the continuous case, calculus methods (e.g. first-order conditions) can be used to determine the optimum amount chosen, and demand can be modeled empirically using regression analysis. On the other hand, discrete choice analysis examines situations in which the potential outcomes are discrete, such that the optimum is not characterized by standard first-order conditions. Thus, instead of examining "how much" as in (en)
- В економіці дискретний вибір моделей, якісний вибір моделей, опис, пояснення, спрогнозувати вибір між двома або більше дискретними величинами, такими як вхід або вихід на ринок праці або вибір між різними видами транспорту. Такий вибір порівнюється зі стандартними моделями попиту, у якому передбачається, що кількість кожного споживаної блага прийнята за неперервну змінну. В неперервному випадку, методи обчислення (наприклад, умова першого порядку) можуть використовуватися для зображення оптимальної кількості обраного, а попит може бути змодельовано емпірично, з використанням регресіонного аналізу. З іншого боку, дискретний аналіз вибору демонструє ситуації, в яких потенційні результати — дискретні (тобто оптимальне не характеризується стандартною умовою першого порядку). Таким чином, заміс (uk)
|
dct:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
Link from a Wikipage to an external page
| |
sameAs
| |
dbp:wikiPageUsesTemplate
| |
has abstract
| - Choice Experiment bzw. Discrete Choice Experiment (deutsch: Diskretes Entscheidungsexperiment oder Diskretes Auswahlexperiment) ist eine Auswahl- bzw. entscheidungsbasierte Methode zur Analyse von ökonomischen Präferenzen. Es können sozialwissenschaftliche Befragungsdaten über hypothetische Auswahlen (geäußerte Präferenzen; Choice Experiment im engeren Sinn) oder Daten über reale Auswahlen (offenbarte Präferenzen) analysiert werden. Die statistischen (ökonometrischen) Ansätze bezeichnet man dabei als diskrete Entscheidungsmodelle. Die Befragten werden in einem Choice Experiment gebeten, eines von mindestens zwei verschiedenen Szenarien (Alternativen) auszuwählen. Jedes der Szenarien ist durch eine Reihe von Eigenschaften (Attributen) beschrieben. Durch die ökonometrische Analyse vieler Auswahlentscheidungen kann der relative Einfluss der Eigenschaften auf das Auswahlverhalten bestimmt werden. Ist eine Eigenschaft ein zu zahlender Geldbetrag, können marginale Zahlungsbereitschaften abgeschätzt werden. (de)
- In economics, discrete choice models, or qualitative choice models, describe, explain, and predict choices between two or more discrete alternatives, such as entering or not entering the labor market, or choosing between modes of transport. Such choices contrast with standard consumption models in which the quantity of each good consumed is assumed to be a continuous variable. In the continuous case, calculus methods (e.g. first-order conditions) can be used to determine the optimum amount chosen, and demand can be modeled empirically using regression analysis. On the other hand, discrete choice analysis examines situations in which the potential outcomes are discrete, such that the optimum is not characterized by standard first-order conditions. Thus, instead of examining "how much" as in problems with continuous choice variables, discrete choice analysis examines "which one". However, discrete choice analysis can also be used to examine the chosen quantity when only a few distinct quantities must be chosen from, such as the number of vehicles a household chooses to own and the number of minutes of telecommunications service a customer decides to purchase. Techniques such as logistic regression and probit regression can be used for empirical analysis of discrete choice. Discrete choice models theoretically or empirically model choices made by people among a finite set of alternatives. The models have been used to examine, e.g., the choice of which car to buy, where to go to college, which mode of transport (car, bus, rail) to take to work among numerous other applications. Discrete choice models are also used to examine choices by organizations, such as firms or government agencies. In the discussion below, the decision-making unit is assumed to be a person, though the concepts are applicable more generally. Daniel McFadden won the Nobel prize in 2000 for his pioneering work in developing the theoretical basis for discrete choice. Discrete choice models statistically relate the choice made by each person to the attributes of the person and the attributes of the alternatives available to the person. For example, the choice of which car a person buys is statistically related to the person's income and age as well as to price, fuel efficiency, size, and other attributes of each available car. The models estimate the probability that a person chooses a particular alternative. The models are often used to forecast how people's choices will change under changes in demographics and/or attributes of the alternatives. Discrete choice models specify the probability that an individual chooses an option among a set of alternatives. The probabilistic description of discrete choice behavior is used not to reflect individual behavior that is viewed as intrinsically probabilistic. Rather, it is the lack of information that leads us to describe choice in a probabilistic fashion. In practice, we cannot know all factors affecting individual choice decisions as their determinants are partially observed or imperfectly measured. Therefore, discrete choice models rely on stochastic assumptions and specifications to account for unobserved factors related to a) choice alternatives, b) taste variation over people (interpersonal heterogeneity) and over time (intra-individual choice dynamics), and c) heterogeneous choice sets. The different formulations have been summarized and classified into groups of models. (en)
|