This HTML5 document contains 38 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n10https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
dbpedia-ukhttp://uk.dbpedia.org/resource/
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
goldhttp://purl.org/linguistics/gold/
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Hough_transform
dbo:wikiPageWikiLink
dbr:Randomized_Hough_transform
Subject Item
dbr:RHT
dbo:wikiPageWikiLink
dbr:Randomized_Hough_transform
dbo:wikiPageDisambiguates
dbr:Randomized_Hough_transform
Subject Item
dbr:Randomized_Hough_transform
rdf:type
dbo:Weapon
rdfs:label
Рандомізоване перетворення Гафа Randomized Hough transform
rdfs:comment
Hough transforms are techniques for object detection, a critical step in many implementations of computer vision, or data mining from images. Specifically, the Randomized Hough transform is a probabilistic variant to the classical Hough transform, and is commonly used to detect curves (straight line, circle, ellipse, etc.) The basic idea of Hough transform (HT) is to implement a voting procedure for all potential curves in the image, and at the termination of the algorithm, curves that do exist in the image will have relatively high voting scores. Randomized Hough transform (RHT) is different from HT in that it tries to avoid conducting the computationally expensive voting process for every nonzero pixel in the image by taking advantage of the geometric properties of analytical curves, and
dcterms:subject
dbc:Computer_vision dbc:Image_processing
dbo:wikiPageID
27169328
dbo:wikiPageRevisionID
1118868926
dbo:wikiPageWikiLink
dbc:Computer_vision dbr:Data_mining dbc:Image_processing dbr:Analytic_variety dbr:Object_detection dbr:Least_squares dbr:Edge_detection dbr:Computer_vision dbr:Ellipse dbr:Tangent dbr:Hough_transform dbr:Accumulator_(computing) dbr:Algorithm
owl:sameAs
dbpedia-uk:Рандомізоване_перетворення_Гафа n10:fdhn wikidata:Q17105451 freebase:m.0bwk4jm
dbp:wikiPageUsesTemplate
dbt:Reflist
dbo:abstract
Hough transforms are techniques for object detection, a critical step in many implementations of computer vision, or data mining from images. Specifically, the Randomized Hough transform is a probabilistic variant to the classical Hough transform, and is commonly used to detect curves (straight line, circle, ellipse, etc.) The basic idea of Hough transform (HT) is to implement a voting procedure for all potential curves in the image, and at the termination of the algorithm, curves that do exist in the image will have relatively high voting scores. Randomized Hough transform (RHT) is different from HT in that it tries to avoid conducting the computationally expensive voting process for every nonzero pixel in the image by taking advantage of the geometric properties of analytical curves, and thus improve the time efficiency and reduce the storage requirement of the original algorithm.
gold:hypernym
dbr:Techniques
prov:wasDerivedFrom
wikipedia-en:Randomized_Hough_transform?oldid=1118868926&ns=0
dbo:wikiPageLength
6189
foaf:isPrimaryTopicOf
wikipedia-en:Randomized_Hough_transform
Subject Item
dbr:Circle_Hough_Transform
dbo:wikiPageWikiLink
dbr:Randomized_Hough_transform
Subject Item
dbr:Randomized_Hough_Transform
dbo:wikiPageWikiLink
dbr:Randomized_Hough_transform
dbo:wikiPageRedirects
dbr:Randomized_Hough_transform
Subject Item
wikipedia-en:Randomized_Hough_transform
foaf:primaryTopic
dbr:Randomized_Hough_transform