This HTML5 document contains 106 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dbpedia-dehttp://de.dbpedia.org/resource/
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
dbpedia-kohttp://ko.dbpedia.org/resource/
dbpedia-eshttp://es.dbpedia.org/resource/
n14https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
dbpedia-pthttp://pt.dbpedia.org/resource/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
provhttp://www.w3.org/ns/prov#
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Rudolf_Haag
dbo:wikiPageWikiLink
dbr:Haag–Łopuszański–Sohnius_theorem
dbp:knownFor
dbr:Haag–Łopuszański–Sohnius_theorem
dbo:knownFor
dbr:Haag–Łopuszański–Sohnius_theorem
Subject Item
dbr:Haag-Lopuszanski-Sohnius_theorem
dbo:wikiPageWikiLink
dbr:Haag–Łopuszański–Sohnius_theorem
dbo:wikiPageRedirects
dbr:Haag–Łopuszański–Sohnius_theorem
Subject Item
dbr:Haag–Lopuszanski–Sohnius_theorem
dbo:wikiPageWikiLink
dbr:Haag–Łopuszański–Sohnius_theorem
dbo:wikiPageRedirects
dbr:Haag–Łopuszański–Sohnius_theorem
Subject Item
dbr:Haag–Łopuszański–Sohnius_theorem
rdfs:label
Teorema de Haag–Łopuszański–Sohnius Haag–Łopuszański–Sohnius theorem 하크-워푸샨스키-조니우스 정리 Teorema de Haag-Lopuszanski-Sohnius Haag-Łopuszański-Sohnius-Theorem
rdfs:comment
En física teórica, el teorema de Haag-Łopuszański-Sohnius demuestra que las posibles simetrías de una teoría cuántica de campos consistente formulada sobre un espacio-tiempo cuatridimensional, no sólo consisten en simetrías internas y simetría de Poincaré, sino que también pueden incluir la supersimetría con cargas centrales (CCs) como una extensión no trivial del . La supersimetría sin CCs fue descubierta en 1971 por Yuri Golfand y que generalizaron el teorema de Coleman-Mandula.Uno de los resultados importantes es que la parte fermiónica de la superálgebra de Lie tiene que tener espín-1/2 (se descarta el espín 3/2 o superior). 하크-워푸샨스키-조니우스 정리(Haag–Łopuszański–Sohnius theorem)는 이론물리학 용어의 하나로, 콜먼-맨듈라 정리를 확장하여, 4차원 시공에서 가능한, 푸앵카레 대칭과 을 섞는 대칭은 초대칭밖에 없다는 정리이다. Em física teórica, o Teorema de Haag-Lopuszanski-Sohnius mostra que as possíveis simetrias de um espaço-tempo com quatro dimensões pela teoria quântica dos campos não apenas consistem de simetrias internas e simetria de Poincaré, mas podem também incluir a supersimetria como uma extensão não trivial da álgebra de Poincaré. Isto generaliza significativamente o teorema de Coleman–Mandula. Das Haag-Łopuszański-Sohnius-Theorem der theoretischen Physik (gefunden 1975 von Rudolf Haag, und ) besagt, dass die Symmetrien einer konsistenten Quantenfeldtheorie nicht bereits mit einer trivialen Kombination von internen Symmetriegruppen und der maximal sind (Coleman-Mandula-Theorem), sondern erst und ausschließlich unter Einbeziehung von Supersymmetrie (SUSY). In theoretical physics, the Haag–Łopuszański–Sohnius theorem states that if both commutating and anticommutating generators are considered, then the only way to nontrivially mix spacetime and internal symmetries is through supersymmetry. The anticommutating generators must be spin-1/2 spinors which can additionally admit their own internal symmetry known as R-symmetry. The theorem is a generalization of the Coleman–Mandula theorem to Lie superalgebras. It was proved in 1975 by Rudolf Haag, Jan Łopuszański, and Martin Sohnius as a response to the development of the first supersymmetric field theories by Julius Wess and Bruno Zumino in 1974.
dcterms:subject
dbc:Quantum_field_theory dbc:Theorems_in_quantum_mechanics dbc:Supersymmetry dbc:Theoretical_physics
dbo:wikiPageID
4402244
dbo:wikiPageRevisionID
1124755998
dbo:wikiPageWikiLink
dbr:Homothety dbr:Supersymmetry dbr:Wess–Zumino_model dbr:Weyl_equation dbr:R-symmetry dbr:Commutative_property dbr:Mass dbr:Four-dimensional_space dbr:Jan_Łopuszański_(physicist) dbc:Quantum_field_theory dbr:Quantum_field_theory dbr:Symmetry_(physics) dbr:Rudolf_Haag dbr:Super-Poincaré_algebra dbr:Scattering_amplitude dbr:Extended_supersymmetry dbr:Analytic_function dbr:Energy dbr:CERN dbr:Poincaré_group dbr:Theoretical_physics dbr:Supergravity dbr:Bruno_Zumino dbr:Generator_(mathematics) dbc:Theorems_in_quantum_mechanics dbr:Spinor dbr:Superconformal_algebra dbr:Spacetime_symmetries dbr:Supercharge dbr:Lie_algebra dbr:Special_conformal_transformation dbr:Direct_product dbr:Coleman–Mandula_theorem dbr:Conformal_symmetry dbr:Van_der_Waerden_notation dbc:Supersymmetry dbr:Karlsruhe dbc:Theoretical_physics dbr:Anticommutative_property dbr:Algebra_over_a_field dbr:Particle dbr:Majorana_equation dbr:S-matrix dbr:Massless_particle dbr:Group_representation dbr:Chirality_(physics) dbr:Momentum_operator dbr:Compact_group dbr:Julius_Wess dbr:Lie_group dbr:Central_charge dbr:Spontaneous_symmetry_breaking dbr:Discrete_symmetry dbr:Wrocław dbr:Hermitian_matrix dbr:Spin_(physics) dbr:Lie_superalgebras
owl:sameAs
dbpedia-ko:하크-워푸샨스키-조니우스_정리 n14:4mSrj dbpedia-de:Haag-Łopuszański-Sohnius-Theorem dbpedia-pt:Teorema_de_Haag-Lopuszanski-Sohnius dbpedia-es:Teorema_de_Haag–Łopuszański–Sohnius wikidata:Q586051
dbp:wikiPageUsesTemplate
dbt:Supersymmetry_topics dbt:Reflist dbt:Short_description
dbo:abstract
En física teórica, el teorema de Haag-Łopuszański-Sohnius demuestra que las posibles simetrías de una teoría cuántica de campos consistente formulada sobre un espacio-tiempo cuatridimensional, no sólo consisten en simetrías internas y simetría de Poincaré, sino que también pueden incluir la supersimetría con cargas centrales (CCs) como una extensión no trivial del . La supersimetría sin CCs fue descubierta en 1971 por Yuri Golfand y que generalizaron el teorema de Coleman-Mandula.Uno de los resultados importantes es que la parte fermiónica de la superálgebra de Lie tiene que tener espín-1/2 (se descarta el espín 3/2 o superior). Em física teórica, o Teorema de Haag-Lopuszanski-Sohnius mostra que as possíveis simetrias de um espaço-tempo com quatro dimensões pela teoria quântica dos campos não apenas consistem de simetrias internas e simetria de Poincaré, mas podem também incluir a supersimetria como uma extensão não trivial da álgebra de Poincaré. Isto generaliza significativamente o teorema de Coleman–Mandula. 하크-워푸샨스키-조니우스 정리(Haag–Łopuszański–Sohnius theorem)는 이론물리학 용어의 하나로, 콜먼-맨듈라 정리를 확장하여, 4차원 시공에서 가능한, 푸앵카레 대칭과 을 섞는 대칭은 초대칭밖에 없다는 정리이다. Das Haag-Łopuszański-Sohnius-Theorem der theoretischen Physik (gefunden 1975 von Rudolf Haag, und ) besagt, dass die Symmetrien einer konsistenten Quantenfeldtheorie nicht bereits mit einer trivialen Kombination von internen Symmetriegruppen und der maximal sind (Coleman-Mandula-Theorem), sondern erst und ausschließlich unter Einbeziehung von Supersymmetrie (SUSY). Der entscheidende Ausweg aus dem (englisch) von Coleman und Mandula war dabei, nicht nur bosonische, sondern auch fermionische Generatoren zuzulassen. Auf diese Weise erhält man die Supersymmetrie zwischen Bosonen und Fermionen. Die fermionischen Generatoren ändern nur den Spin der Teilchen, alle anderen Quantenzahlen werden nicht beeinflusst. Insbesondere kommutieren die SUSY-Generatoren mit dem Viererimpuls, der Antikommutator zweier SUSY-Generatoren jedoch liefert eine Raumzeit-Transformation. In theoretical physics, the Haag–Łopuszański–Sohnius theorem states that if both commutating and anticommutating generators are considered, then the only way to nontrivially mix spacetime and internal symmetries is through supersymmetry. The anticommutating generators must be spin-1/2 spinors which can additionally admit their own internal symmetry known as R-symmetry. The theorem is a generalization of the Coleman–Mandula theorem to Lie superalgebras. It was proved in 1975 by Rudolf Haag, Jan Łopuszański, and Martin Sohnius as a response to the development of the first supersymmetric field theories by Julius Wess and Bruno Zumino in 1974.
prov:wasDerivedFrom
wikipedia-en:Haag–Łopuszański–Sohnius_theorem?oldid=1124755998&ns=0
dbo:wikiPageLength
9635
foaf:isPrimaryTopicOf
wikipedia-en:Haag–Łopuszański–Sohnius_theorem
Subject Item
dbr:Super-Poincaré_algebra
dbo:wikiPageWikiLink
dbr:Haag–Łopuszański–Sohnius_theorem
Subject Item
dbr:Supersymmetry_algebra
dbo:wikiPageWikiLink
dbr:Haag–Łopuszański–Sohnius_theorem
Subject Item
dbr:No-go_theorem
dbo:wikiPageWikiLink
dbr:Haag–Łopuszański–Sohnius_theorem
Subject Item
dbr:Haag-Łopuszański-Sohnius_theorem
dbo:wikiPageWikiLink
dbr:Haag–Łopuszański–Sohnius_theorem
dbo:wikiPageRedirects
dbr:Haag–Łopuszański–Sohnius_theorem
Subject Item
dbr:Coleman–Mandula_theorem
dbo:wikiPageWikiLink
dbr:Haag–Łopuszański–Sohnius_theorem
Subject Item
dbr:List_of_theorems
dbo:wikiPageWikiLink
dbr:Haag–Łopuszański–Sohnius_theorem
Subject Item
dbr:Supersymmetry
dbo:wikiPageWikiLink
dbr:Haag–Łopuszański–Sohnius_theorem
Subject Item
wikipedia-en:Haag–Łopuszański–Sohnius_theorem
foaf:primaryTopic
dbr:Haag–Łopuszański–Sohnius_theorem