An Entity of Type: Abstraction100002137, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org:8891

In the mathematical area of knot theory, the unknotting number of a knot is the minimum number of times the knot must be passed through itself (crossing switch) to untie it. If a knot has unknotting number , then there exists a diagram of the knot which can be changed to unknot by switching crossings. The unknotting number of a knot is always less than half of its crossing number. Any composite knot has unknotting number at least two, and therefore every knot with unknotting number one is a prime knot. The following table show the unknotting numbers for the first few knots: * * * * * * * *

Property Value
dbo:abstract
  • In the mathematical area of knot theory, the unknotting number of a knot is the minimum number of times the knot must be passed through itself (crossing switch) to untie it. If a knot has unknotting number , then there exists a diagram of the knot which can be changed to unknot by switching crossings. The unknotting number of a knot is always less than half of its crossing number. Any composite knot has unknotting number at least two, and therefore every knot with unknotting number one is a prime knot. The following table show the unknotting numbers for the first few knots: * Trefoil knot unknotting number 1 * Figure-eight knot unknotting number 1 * Cinquefoil knot unknotting number 2 * Three-twist knot unknotting number 1 * Stevedore knot unknotting number 1 * 6₂ knot unknotting number 1 * 6₃ knot unknotting number 1 * 7₁ knot unknotting number 3 In general, it is relatively difficult to determine the unknotting number of a given knot. Known cases include: * The unknotting number of a nontrivial twist knot is always equal to one. * The unknotting number of a -torus knot is equal to . * The unknotting numbers of prime knots with nine or fewer crossings have all been determined. (The unknotting number of the 1011 prime knot is unknown.) (en)
  • Число развязывания в теории узлов — один из важных инвариантов узла, минимальное число переключения мостов, то есть число переходов сквозь себя, после чего узел развязывается. (ru)
  • Число розв'язування в теорії вузлів — один з важливих інваріантів вузла, найменше число перемикання мостів, тобто число переходів крізь себе, після чого вузол розв'язується. (uk)
dbo:thumbnail
dbo:wikiPageID
  • 26711383 (xsd:integer)
dbo:wikiPageLength
  • 3383 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1097146407 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • Число развязывания в теории узлов — один из важных инвариантов узла, минимальное число переключения мостов, то есть число переходов сквозь себя, после чего узел развязывается. (ru)
  • Число розв'язування в теорії вузлів — один з важливих інваріантів вузла, найменше число перемикання мостів, тобто число переходів крізь себе, після чого вузол розв'язується. (uk)
  • In the mathematical area of knot theory, the unknotting number of a knot is the minimum number of times the knot must be passed through itself (crossing switch) to untie it. If a knot has unknotting number , then there exists a diagram of the knot which can be changed to unknot by switching crossings. The unknotting number of a knot is always less than half of its crossing number. Any composite knot has unknotting number at least two, and therefore every knot with unknotting number one is a prime knot. The following table show the unknotting numbers for the first few knots: * * * * * * * * (en)
rdfs:label
  • Unknotting number (en)
  • Число развязывания (ru)
  • Число розв'язування (uk)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License