An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org:8891

In geometry, a uniform honeycomb or uniform tessellation or infinite uniform polytope, is a vertex-transitive honeycomb made from uniform polytope facets. All of its vertices are identical and there is the same combination and arrangement of faces at each vertex. Its dimension can be clarified as n-honeycomb for an n-dimensional honeycomb. An n-dimensional uniform honeycomb can be constructed on the surface of n-spheres, in n-dimensional Euclidean space, and n-dimensional hyperbolic space. A 2-dimensional uniform honeycomb is more often called a uniform tiling or uniform tessellation.

Property Value
dbo:abstract
  • In geometry, a uniform honeycomb or uniform tessellation or infinite uniform polytope, is a vertex-transitive honeycomb made from uniform polytope facets. All of its vertices are identical and there is the same combination and arrangement of faces at each vertex. Its dimension can be clarified as n-honeycomb for an n-dimensional honeycomb. An n-dimensional uniform honeycomb can be constructed on the surface of n-spheres, in n-dimensional Euclidean space, and n-dimensional hyperbolic space. A 2-dimensional uniform honeycomb is more often called a uniform tiling or uniform tessellation. Nearly all uniform tessellations can be generated by a Wythoff construction, and represented by a Coxeter–Dynkin diagram. The terminology for the convex uniform polytopes used in uniform polyhedron, uniform 4-polytope, uniform 5-polytope, uniform 6-polytope, uniform tiling, and convex uniform honeycomb articles were coined by Norman Johnson. Wythoffian tessellations can be defined by a vertex figure. For 2-dimensional tilings, they can be given by a vertex configuration listing the sequence of faces around every vertex. For example, 4.4.4.4 represents a regular tessellation, a square tiling, with 4 squares around each vertex. In general an n-dimensional uniform tessellation vertex figures are define by an (n–1)-polytope with edges labeled with integers, representing the number of sides of the polygonal face at each edge radiating from the vertex. (en)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 23506187 (xsd:integer)
dbo:wikiPageLength
  • 6263 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1119353880 (xsd:integer)
dbo:wikiPageWikiLink
dbp:title
  • Uniform tessellation (en)
dbp:urlname
  • UniformTessellation (en)
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdfs:comment
  • In geometry, a uniform honeycomb or uniform tessellation or infinite uniform polytope, is a vertex-transitive honeycomb made from uniform polytope facets. All of its vertices are identical and there is the same combination and arrangement of faces at each vertex. Its dimension can be clarified as n-honeycomb for an n-dimensional honeycomb. An n-dimensional uniform honeycomb can be constructed on the surface of n-spheres, in n-dimensional Euclidean space, and n-dimensional hyperbolic space. A 2-dimensional uniform honeycomb is more often called a uniform tiling or uniform tessellation. (en)
rdfs:label
  • Uniform honeycomb (en)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License