About: Subcoloring

An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org:8891

In graph theory, a subcoloring is an assignment of colors to a graph's vertices such that each color class induces a vertex disjoint union of cliques. That is, each color class should form a cluster graph. The subchromatic number χS(G) of a graph G is the fewest colors needed in any subcoloring of G. Subcoloring and subchromatic number were introduced by . Every proper coloring and cocoloring of a graph are also subcolorings, so the subchromatic number of any graph is at most equal to the cochromatic number, which is at most equal to the chromatic number.

Property Value
dbo:abstract
  • In graph theory, a subcoloring is an assignment of colors to a graph's vertices such that each color class induces a vertex disjoint union of cliques. That is, each color class should form a cluster graph. The subchromatic number χS(G) of a graph G is the fewest colors needed in any subcoloring of G. Subcoloring and subchromatic number were introduced by . Every proper coloring and cocoloring of a graph are also subcolorings, so the subchromatic number of any graph is at most equal to the cochromatic number, which is at most equal to the chromatic number. Subcoloring is as difficult to solve exactly as coloring, in the sense that (like coloring) it is NP-complete. More specifically,the problem of determining whether a planar graph has subchromatic number at most 2 is NP-complete, even if it is a * triangle-free graph with maximum degree 4, * comparability graph with maximum degree 4, * line graph of a bipartite graph with maximum degree 4, * graph with girth 5. The subchromatic number of a cograph can be computed in polynomial time. For every fixed integer r, it is possible to decide in polynomial time whether the subchromatic number of interval and permutation graphs is at most r. (en)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 702867 (xsd:integer)
dbo:wikiPageLength
  • 4435 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1082270386 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdfs:comment
  • In graph theory, a subcoloring is an assignment of colors to a graph's vertices such that each color class induces a vertex disjoint union of cliques. That is, each color class should form a cluster graph. The subchromatic number χS(G) of a graph G is the fewest colors needed in any subcoloring of G. Subcoloring and subchromatic number were introduced by . Every proper coloring and cocoloring of a graph are also subcolorings, so the subchromatic number of any graph is at most equal to the cochromatic number, which is at most equal to the chromatic number. (en)
rdfs:label
  • Subcoloring (en)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License