An Entity of Type: Band, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org:8891

In mathematics, a quasithin group is a finite simple group that resembles a group of Lie type of rank at most 2 over a field of characteristic 2. More precisely it is a finite simple group of characteristic 2 type and width 2. Here characteristic 2 type means that its centralizers of involutions resemble those of groups of Lie type over fields of characteristic 2, and the width is roughly the maximal rank of an abelian group of odd order normalizing a non-trivial 2-subgroup of G. When G is a group of Lie type of characteristic 2 type, the width is usually the rank (the dimension of a maximal torus of the algebraic group).

Property Value
dbo:abstract
  • Στα μαθηματικά μία quasithin ομάδα είναι πεπερασμένη απλή ομάδα που μοιάζει με μια ομάδα τύπου Lie βαθμίσας το πολύ 2 πάνω από ένα πεδίο χαρακτηριστικής 2. Πιο συγκεκριμένα είναι μια πεπερασμένη απλή ομάδα χαρακτηριστικής τύπου 2 και πλάτος 2. Εδώ χαρακτηριστική τύπου 2 σημαίνει ότι η κανονικοποιητής της involutions μοιάζουν με αυτά των ομάδων τύπου Lie πάνω από τα πεδία με τα χαρακτηριστική 2, και το πλάτος του είναι περίπου η μέγιστη βαθμίδα της αβείανής ομάδας περριττού χαρακτήρα ομαλοποιώντας μια μη-τετριμμένη 2-υποομάδα της G. Όταν η G είναι μια ομάδα τύπου Lie του χαρακτηριστικής τύπου 2, το πλάτος του είναι συνήθως η βαθμίδα (η διάσταση της μέγιστης torus της αλγεβρικής ομάδας). (el)
  • In mathematics, a quasithin group is a finite simple group that resembles a group of Lie type of rank at most 2 over a field of characteristic 2. More precisely it is a finite simple group of characteristic 2 type and width 2. Here characteristic 2 type means that its centralizers of involutions resemble those of groups of Lie type over fields of characteristic 2, and the width is roughly the maximal rank of an abelian group of odd order normalizing a non-trivial 2-subgroup of G. When G is a group of Lie type of characteristic 2 type, the width is usually the rank (the dimension of a maximal torus of the algebraic group). (en)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 12939181 (xsd:integer)
dbo:wikiPageLength
  • 4364 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1020414341 (xsd:integer)
dbo:wikiPageWikiLink
dbp:authorlink
  • Michael Aschbacher (en)
dbp:b
  • 3 (xsd:integer)
  • 4 (xsd:integer)
dbp:first
  • Michael (en)
  • Stephen D. (en)
dbp:last
  • Smith (en)
  • Aschbacher (en)
dbp:p
  • ε (en)
dbp:wikiPageUsesTemplate
dbp:year
  • 2004 (xsd:integer)
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • Στα μαθηματικά μία quasithin ομάδα είναι πεπερασμένη απλή ομάδα που μοιάζει με μια ομάδα τύπου Lie βαθμίσας το πολύ 2 πάνω από ένα πεδίο χαρακτηριστικής 2. Πιο συγκεκριμένα είναι μια πεπερασμένη απλή ομάδα χαρακτηριστικής τύπου 2 και πλάτος 2. Εδώ χαρακτηριστική τύπου 2 σημαίνει ότι η κανονικοποιητής της involutions μοιάζουν με αυτά των ομάδων τύπου Lie πάνω από τα πεδία με τα χαρακτηριστική 2, και το πλάτος του είναι περίπου η μέγιστη βαθμίδα της αβείανής ομάδας περριττού χαρακτήρα ομαλοποιώντας μια μη-τετριμμένη 2-υποομάδα της G. Όταν η G είναι μια ομάδα τύπου Lie του χαρακτηριστικής τύπου 2, το πλάτος του είναι συνήθως η βαθμίδα (η διάσταση της μέγιστης torus της αλγεβρικής ομάδας). (el)
  • In mathematics, a quasithin group is a finite simple group that resembles a group of Lie type of rank at most 2 over a field of characteristic 2. More precisely it is a finite simple group of characteristic 2 type and width 2. Here characteristic 2 type means that its centralizers of involutions resemble those of groups of Lie type over fields of characteristic 2, and the width is roughly the maximal rank of an abelian group of odd order normalizing a non-trivial 2-subgroup of G. When G is a group of Lie type of characteristic 2 type, the width is usually the rank (the dimension of a maximal torus of the algebraic group). (en)
rdfs:label
  • Quasithin group (el)
  • Quasithin group (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License