An Entity of Type: Band, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org:8891

In mathematics, a quasisimple group (also known as a covering group) is a group that is a perfect central extension E of a simple group S. In other words, there is a short exact sequence such that , where denotes the center of E and [ , ] denotes the commutator. Equivalently, a group is quasisimple if it is equal to its commutator subgroup and its inner automorphism group Inn(G) (its quotient by its center) is simple (and it follows Inn(G) must be non-abelian simple, as inner automorphism groups are never non-trivial cyclic). All non-abelian simple groups are quasisimple.

Property Value
dbo:abstract
  • En mathématiques, un groupe parfait G est un groupe quasi-simple si le groupe de ses automorphismes intérieurs est simple. En d'autres termes, s'il existe une suite exacte courte : où S est un groupe simple. (fr)
  • In mathematics, a quasisimple group (also known as a covering group) is a group that is a perfect central extension E of a simple group S. In other words, there is a short exact sequence such that , where denotes the center of E and [ , ] denotes the commutator. Equivalently, a group is quasisimple if it is equal to its commutator subgroup and its inner automorphism group Inn(G) (its quotient by its center) is simple (and it follows Inn(G) must be non-abelian simple, as inner automorphism groups are never non-trivial cyclic). All non-abelian simple groups are quasisimple. The subnormal quasisimple subgroups of a group control the structure of a finite insoluble group in much the same way as the minimal normal subgroups of a finite soluble group do, and so are given a name, component. The subgroup generated by the subnormal quasisimple subgroups is called the layer, and along with the minimal normal soluble subgroups generates a subgroup called the generalized Fitting subgroup. The quasisimple groups are often studied alongside the simple groups and groups related to their automorphism groups, the almost simple groups. The representation theory of the quasisimple groups is nearly identical to the projective representation theory of the simple groups. (en)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 1642729 (xsd:integer)
dbo:wikiPageLength
  • 2416 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1046632663 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • En mathématiques, un groupe parfait G est un groupe quasi-simple si le groupe de ses automorphismes intérieurs est simple. En d'autres termes, s'il existe une suite exacte courte : où S est un groupe simple. (fr)
  • In mathematics, a quasisimple group (also known as a covering group) is a group that is a perfect central extension E of a simple group S. In other words, there is a short exact sequence such that , where denotes the center of E and [ , ] denotes the commutator. Equivalently, a group is quasisimple if it is equal to its commutator subgroup and its inner automorphism group Inn(G) (its quotient by its center) is simple (and it follows Inn(G) must be non-abelian simple, as inner automorphism groups are never non-trivial cyclic). All non-abelian simple groups are quasisimple. (en)
rdfs:label
  • Groupe quasi-simple (fr)
  • Quasisimple group (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License