In mathematical finite group theory, a quadratic pair for the odd prime p, introduced by , is a finite group G together with a quadratic module, a faithful representation M on a vector space over the finite field with p elements such that G is generated by elements with minimum polynomial (x − 1)2. Thompson classified the quadratic pairs for p ≥ 5. classified the quadratic pairs for p = 3. With a few exceptions, especially for p = 3, groups with a quadratic pair for the prime p tend to be more or less groups of Lie type in characteristic p.
Property | Value |
---|---|
dbo:abstract |
|
dbo:wikiPageID |
|
dbo:wikiPageLength |
|
dbo:wikiPageRevisionID |
|
dbo:wikiPageWikiLink | |
dbp:wikiPageUsesTemplate | |
dcterms:subject | |
gold:hypernym | |
rdf:type | |
rdfs:comment |
|
rdfs:label |
|
owl:sameAs | |
prov:wasDerivedFrom | |
foaf:isPrimaryTopicOf | |
is dbo:wikiPageRedirects of | |
is dbo:wikiPageWikiLink of | |
is foaf:primaryTopic of |