In mathematical finite group theory, a quadratic pair for the odd prime p, introduced by , is a finite group G together with a quadratic module, a faithful representation M on a vector space over the finite field with p elements such that G is generated by elements with minimum polynomial (x − 1)2. Thompson classified the quadratic pairs for p ≥ 5. classified the quadratic pairs for p = 3. With a few exceptions, especially for p = 3, groups with a quadratic pair for the prime p tend to be more or less groups of Lie type in characteristic p.
| Property | Value |
|---|---|
| dbo:abstract |
|
| dbo:wikiPageID |
|
| dbo:wikiPageLength |
|
| dbo:wikiPageRevisionID |
|
| dbo:wikiPageWikiLink | |
| dbp:wikiPageUsesTemplate | |
| dct:subject | |
| gold:hypernym | |
| rdf:type | |
| rdfs:comment |
|
| rdfs:label |
|
| owl:sameAs | |
| prov:wasDerivedFrom | |
| foaf:isPrimaryTopicOf | |
| is dbo:wikiPageRedirects of | |
| is dbo:wikiPageWikiLink of | |
| is foaf:primaryTopic of |