dbo:abstract
|
- En matemáticas, el tensor de no-metricidad en geometría diferencial es la derivada covariante del tensor métrico. Es, por tanto, un campo tensorial de orden 3. Se hace cero para la . Por componentes, se puede definir fácilmente como sigue. Este tensor mide la tasa de cambio de las componentes de un tensor métrico a lo largo de un flujo de un cierto campo vectorial, puesto que donde es la base coordenada de campos vectoriales de la variedad, en el caso de que sea 4-dimensioal. Decimos que una conexión es compatible con la métrica cuando la derivada covariante que tiene asociada, actuando sobre el tensor métrico, (llamémoslo , por ejemplo) se anula, i.e. Si la conexión es también libre de torsión (i.e. totalmente simétrica) se conoce como la conexión de Levi-Civita, la cual es la única conexión sin torsión que además es compatible con la métrica. Desde un punto de vista geométrico, el hecho de que el tensor de no-metricidad no se anule para una cierta métrica implica que el módulo de un cierto vector definido sobre el espacio tangente a la variedad en un punto , cambia cuando este es valuado a lo largo de la dirección (flujo) de otro vector arbitrario. (es)
- In mathematics, the nonmetricity tensor in differential geometry is the covariant derivative of the metric tensor. It is therefore a tensor field of order three. It vanishes for the case of Riemannian geometry and can beused to study non-Riemannian spacetimes. (en)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 3715 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
gold:hypernym
| |
rdf:type
| |
rdfs:comment
|
- In mathematics, the nonmetricity tensor in differential geometry is the covariant derivative of the metric tensor. It is therefore a tensor field of order three. It vanishes for the case of Riemannian geometry and can beused to study non-Riemannian spacetimes. (en)
- En matemáticas, el tensor de no-metricidad en geometría diferencial es la derivada covariante del tensor métrico. Es, por tanto, un campo tensorial de orden 3. Se hace cero para la . Por componentes, se puede definir fácilmente como sigue. Este tensor mide la tasa de cambio de las componentes de un tensor métrico a lo largo de un flujo de un cierto campo vectorial, puesto que (es)
|
rdfs:label
|
- Tensor de no metricidad (es)
- Nonmetricity tensor (en)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |