dbo:abstract
|
- The Murnaghan equation of state is a relationship between the volume of a body and the pressure to which it is subjected. This is one of many state equations that have been used in earth sciences and shock physics to model the behavior of matter under conditions of high pressure. It owes its name to Francis D. Murnaghan who proposed it in 1944 to reflect material behavior under a pressure range as wide as possible to reflect an experimentally established fact: the more a solid is compressed, the more difficult it is to compress further. The Murnaghan equation is derived, under certain assumptions, from the equations of continuum mechanics. It involves two adjustable parameters: the modulus of incompressibility K0 and its first derivative with respect to the pressure, K′0, both measured at ambient pressure. In general, these coefficients are determined by a regression on experimentally obtained values of volume V as a function of the pressure P. These experimental data can be obtained by X-ray diffraction or by shock tests. Regression can also be performed on the values of the energy as a function of the volume obtained from ab-initio and molecular dynamics calculations. The Murnaghan equation of state is typically expressed as: If the reduction in volume under compression is low, i.e., for V/V0 greater than about 90%, the Murnaghan equation can model experimental data with satisfactory accuracy. Moreover, unlike many proposed equations of state, it gives an explicit expression of the volume as a function of pressure V(P). But its range of validity is limited and physical interpretation inadequate. However, this equation of state continues to be widely used in models of solid explosives. Of more elaborate equations of state, the most used in earth physics is the Birch–Murnaghan equation of state. In shock physics of metals and alloys, another widely used equation of state is the Mie–Grüneisen equation of state. (en)
- L'équation d'état de Murnaghan est une relation qui lie le volume d'un corps et la pression à laquelle il est soumis. C'est une des nombreuses équations d'état qui ont été utilisées en sciences de la Terre pour modéliser le comportement de la matière dans les conditions de hautes pressions qui règnent à l'intérieur du globe terrestre. Elle doit son nom à Francis Dominic Murnaghan qui l'a proposée en 1944 afin de rendre compte sur une gamme de pressions aussi large que possible d'un fait expérimentalement établi : plus on comprime un solide, plus il devient difficile de le comprimer. L'équation de Murnaghan est déduite, moyennant certaines hypothèses, des équations de la mécanique des milieux continus. Elle fait intervenir deux paramètres ajustables qu'on identifie au module d'incompressibilité et à sa dérivée première par rapport à la pression, , tous deux pris à pression nulle. En général, on détermine ces deux coefficients par une régression sur les valeurs du volume en fonction de la pression obtenues expérimentalement, le plus souvent par diffraction des rayons X. La régression peut également être effectuée sur les valeurs de l'énergie en fonction du volume obtenues par calcul ab initio. Tant que la réduction de volume reste faible, c'est-à-dire pour supérieur à 90 % environ, l'équation de Murnaghan permet de modéliser avec une précision satisfaisante les données expérimentales. De plus, à la différence de la plupart des nombreuses équations d'état proposées, elle donne une expression explicite du volume en fonction de la pression . Mais son domaine de validité reste trop limité, et son interprétation physique insatisfaisante. On a plus souvent recours, pour l'analyse des données de compression, à d'autres équations d'état plus élaborées dont la plus utilisée est l'équation d'état de Birch-Murnaghan. (fr)
|