An Entity of Type: Whole100003553, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org:8891

The Lazarus effect refers to semiconductor detectors; when these are used in harsh radiation environments, defects begin to appear in the semiconductor crystal lattice as atoms become displaced because of the interaction with the high-energy traversing particles. These defects, in the form of both lattice vacancies and atoms at interstitial sites, have the effect of temporarily trapping the electrons and holes which are created when ionizing particles pass through the detector. Since it is these electrons and holes drifting in an electric field which produce a signal that announces the passage of a particle, when large amounts of defects are produced, the detector signal can be strongly reduced leading to an unusable (dead) detector.

Property Value
dbo:abstract
  • Der Lazarus-Effekt (Lazarus-Phänomen) ist die Reanimation („Wiederbelebung“) von Silizium-Detektoren bei tiefen Temperaturen. 1997 entdeckten , , Stefan Janos, und von der Universität Bern, dass eine Abkühlung von nicht mehr funktionsfähigen Teilchendetektoren aus Silizium auf Temperaturen unter 130 K diese wieder in einen funktionsfähigen Zustand bringen kann. Anders gesagt, die „toten“ Detektoren kann man durch ein solches Verfahren „reanimieren“. In Analogie zu der biblischen Geschichte wurde dieses Phänomen „Lazarus-Effekt“ (Wiederbelebung) genannt. (de)
  • The Lazarus effect refers to semiconductor detectors; when these are used in harsh radiation environments, defects begin to appear in the semiconductor crystal lattice as atoms become displaced because of the interaction with the high-energy traversing particles. These defects, in the form of both lattice vacancies and atoms at interstitial sites, have the effect of temporarily trapping the electrons and holes which are created when ionizing particles pass through the detector. Since it is these electrons and holes drifting in an electric field which produce a signal that announces the passage of a particle, when large amounts of defects are produced, the detector signal can be strongly reduced leading to an unusable (dead) detector. However in 1997, , , Stefan Janos, and at the University of Bern (Switzerland) found out that at temperatures below 130 kelvins (about −143 degrees Celsius), dead detectors apparently come back to life. The explanation of this phenomenon, known as the Lazarus effect, is related to the dynamics of the induced defects in the semiconductor bulk. At room temperature radiation damage induced defects temporarily trap electrons and holes resulting from ionization, which are then emitted back to the conduction band or valence band in a time that is typically longer than the read-out time of the connected electronics. Consequently the measured signal is smaller than it should be. This leads to low signal-to-noise ratios that in turn can prevent the detection of the traversing particle.At cryogenic temperatures, however, once an electron or hole, resulting from ionization or from detector leakage current, is trapped in a local defect, it remains trapped for a long time due to the very low thermal energy of the lattice. This leads to a large fraction of 'traps' becoming filled and therefore inactive. Trapping of electrons and holes generated by particles traversing the detector is then prevented and little or no signal is lost. The understanding of this has been detailed in a number of papers. Thanks to the Lazarus effect, silicon detectors have been proven to be able survive radiation doses in excess of 90 GRad and they have been proposed for future high luminosity experiments. (en)
  • 拉撒路效应(英語:Lazarus effect):半导体探测器在高能粒子等辐射环境下应用时,体内产生许多和空位;由于它们捕获信号中的电子和空穴过多而不能使用。但约在-143摄氏度下,又能重新恢复性能和应用。这种现象,称为拉撒路效应。这种效应是1997年瑞士伯尔尼大学的和等人发现的。他们对这效应还做了如下的解析: 半导体探测器室温下在等辐射作用下,体内出现许多缺陷,捕获信号的电子和空穴;后把它们发射回导带或价带;但所需时间要比探测器的读出时间长。结果,使读出信号比应有信号小许多,使信/噪比过小而不能使用。但在低温下,探测器由于点阵的低热能,电子或空穴被局域缺陷捕获很长时间,这样,使大部“陷阱”都被占满而不起作用。这样使探测器的信号丢失很少或不丢失。探测器的性能得到恢复而能重新使用。 (zh)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 4335838 (xsd:integer)
dbo:wikiPageLength
  • 5489 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1090176650 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • Der Lazarus-Effekt (Lazarus-Phänomen) ist die Reanimation („Wiederbelebung“) von Silizium-Detektoren bei tiefen Temperaturen. 1997 entdeckten , , Stefan Janos, und von der Universität Bern, dass eine Abkühlung von nicht mehr funktionsfähigen Teilchendetektoren aus Silizium auf Temperaturen unter 130 K diese wieder in einen funktionsfähigen Zustand bringen kann. Anders gesagt, die „toten“ Detektoren kann man durch ein solches Verfahren „reanimieren“. In Analogie zu der biblischen Geschichte wurde dieses Phänomen „Lazarus-Effekt“ (Wiederbelebung) genannt. (de)
  • 拉撒路效应(英語:Lazarus effect):半导体探测器在高能粒子等辐射环境下应用时,体内产生许多和空位;由于它们捕获信号中的电子和空穴过多而不能使用。但约在-143摄氏度下,又能重新恢复性能和应用。这种现象,称为拉撒路效应。这种效应是1997年瑞士伯尔尼大学的和等人发现的。他们对这效应还做了如下的解析: 半导体探测器室温下在等辐射作用下,体内出现许多缺陷,捕获信号的电子和空穴;后把它们发射回导带或价带;但所需时间要比探测器的读出时间长。结果,使读出信号比应有信号小许多,使信/噪比过小而不能使用。但在低温下,探测器由于点阵的低热能,电子或空穴被局域缺陷捕获很长时间,这样,使大部“陷阱”都被占满而不起作用。这样使探测器的信号丢失很少或不丢失。探测器的性能得到恢复而能重新使用。 (zh)
  • The Lazarus effect refers to semiconductor detectors; when these are used in harsh radiation environments, defects begin to appear in the semiconductor crystal lattice as atoms become displaced because of the interaction with the high-energy traversing particles. These defects, in the form of both lattice vacancies and atoms at interstitial sites, have the effect of temporarily trapping the electrons and holes which are created when ionizing particles pass through the detector. Since it is these electrons and holes drifting in an electric field which produce a signal that announces the passage of a particle, when large amounts of defects are produced, the detector signal can be strongly reduced leading to an unusable (dead) detector. (en)
rdfs:label
  • Lazarus-Effekt (Physik) (de)
  • Lazarus effect (en)
  • 拉撒路效应 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License