An Entity of Type: software, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org:8891

In mathematics, an invariant measure is a measure that is preserved by some function. The function may be a geometric transformation. For examples, circular angle is invariant under rotation, hyperbolic angle is invariant under squeeze mapping, and a difference of slopes is invariant under shear mapping. Ergodic theory is the study of invariant measures in dynamical systems. The Krylov–Bogolyubov theorem proves the existence of invariant measures under certain conditions on the function and space under consideration.

Property Value
dbo:abstract
  • In mathematics, an invariant measure is a measure that is preserved by some function. The function may be a geometric transformation. For examples, circular angle is invariant under rotation, hyperbolic angle is invariant under squeeze mapping, and a difference of slopes is invariant under shear mapping. Ergodic theory is the study of invariant measures in dynamical systems. The Krylov–Bogolyubov theorem proves the existence of invariant measures under certain conditions on the function and space under consideration. (en)
  • 数学において不変測度(ふへんそくど、英: invariant measure)とは、ある函数によって保存される測度のことを言う。エルゴード理論は、力学系における不変測度についての研究である。クリロフ=ボゴリューボフの定理は、函数と考えている空間に関するある条件の下での不変測度の存在を示すものである。 (ja)
  • Инвариантная мера — в теории динамических систем мера, определённая в фазовом пространстве, связанная с динамической системой и не изменяющаяся с течением времени при эволюции состояния динамической системы в фазовом пространстве. Понятие инвариантной меры применяется при усреднении уравнений движения, в теории показателей Ляпунова, в теории метрической энтропии и вероятностных фрактальных размерностей. (ru)
  • Miara niezmiennicza – miara zachowywana przez pewną funkcję. Są one szczególnym obszarem zainteresowań w studiach nad układami dynamicznymi. mówi o istnieniu miar niezmienniczych pod pewnymi warunkami względem danych: funkcji i przestrzeni. (pl)
dbo:thumbnail
dbo:wikiPageID
  • 7635201 (xsd:integer)
dbo:wikiPageLength
  • 5206 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1067741310 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • In mathematics, an invariant measure is a measure that is preserved by some function. The function may be a geometric transformation. For examples, circular angle is invariant under rotation, hyperbolic angle is invariant under squeeze mapping, and a difference of slopes is invariant under shear mapping. Ergodic theory is the study of invariant measures in dynamical systems. The Krylov–Bogolyubov theorem proves the existence of invariant measures under certain conditions on the function and space under consideration. (en)
  • 数学において不変測度(ふへんそくど、英: invariant measure)とは、ある函数によって保存される測度のことを言う。エルゴード理論は、力学系における不変測度についての研究である。クリロフ=ボゴリューボフの定理は、函数と考えている空間に関するある条件の下での不変測度の存在を示すものである。 (ja)
  • Инвариантная мера — в теории динамических систем мера, определённая в фазовом пространстве, связанная с динамической системой и не изменяющаяся с течением времени при эволюции состояния динамической системы в фазовом пространстве. Понятие инвариантной меры применяется при усреднении уравнений движения, в теории показателей Ляпунова, в теории метрической энтропии и вероятностных фрактальных размерностей. (ru)
  • Miara niezmiennicza – miara zachowywana przez pewną funkcję. Są one szczególnym obszarem zainteresowań w studiach nad układami dynamicznymi. mówi o istnieniu miar niezmienniczych pod pewnymi warunkami względem danych: funkcji i przestrzeni. (pl)
rdfs:label
  • Invariant measure (en)
  • 不変測度 (ja)
  • Miara niezmiennicza (pl)
  • Инвариантная мера (ru)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License