dbo:abstract
|
- In geometry, the relation of hyperbolic orthogonality between two lines separated by the asymptotes of a hyperbola is a concept used in special relativity to define simultaneous events. Two events will be simultaneous when they are on a line hyperbolically orthogonal to a particular time line. This dependence on a certain time line is determined by velocity, and is the basis for the relativity of simultaneity. (en)
- Гіперболічна ортогональність — поняття в евклідовій геометрії. Дві лінії називаються гіперболічно ортогональними, якщо вони є відбиттям одна одної відносно асимптоти даної гіперболи. На площині часто використовують дві особливі гіперболи: (A) xy = 1 з асимптотою y = 0.При відбитті відносно осі x, лінія y = mx стає y = -mx.В цьому випадку лінії є гіперболічно ортогональними, якщо їхні кутові коефіцієнти є протилежними числами.(B) x2 — y2 = 1 з асимптотою y = x.Для ліній y = mx при -1 < m <1, якщо x = 1/m, то y = 1.Точка (1/m, 1) на лінії відбивається відносно y = x у точку (1, 1/m).Тому відбита лінія має кутовий коефіцієнт 1/m, а кутові коефіцієнти гіперболічно ортогональних ліній — взаємно обернені. Відношення гіперболічної ортогональності фактично застосовується до класів паралельних прямих на площині, де будь-яка конкретна лінія може представляти клас. Таким чином, для даної гіперболи і асимптоти A пара прямих (a, b) є гіперболічно ортогональними, якщо існує пара (c, d) така, що , а c — це відбиття d відносно A. Властивість радіуса, ортогонального до дотичної до кривої, розширюється від кола на гіперболу за допомогою поняття гіперболічної ортогональності. Від моменту появи 1908 року простору-часу Мінковського введено концепцію гіперболічно ортогональних до лінії часу (дотична до світової лінії) точок в площині простору-часу, для визначення одночасності подій відносно заданої лінії часу. У дослідженні Мінковського використовується гіпербола типу (B). Два вектори є нормальними (в сенсі гіперболічної ортогональності) якщо Якщо c = 1, yi і zi дорівнюють нулю, x1 ≠ 0, t2 ≠ 0, то . В аналітичній геометрії для опису ортогональності використовується білінійна форма, причому два елементи ортогональні, коли їхня білінійна форма обертається на нуль. У площині комплексних чисел , білінійна форма є , тоді як у площині гіперболічних чисел білінійна форма є Два вектора z1 і z2 в комплексній площині, і w1 і w2 в гіперболічній площині називаються відповідно евклідово ортогональними і гіперболічно ортогональними, якщо їх відповідні внутрішні добутки білінійних форм дорівнюють нулю. Для даної гіперболи з асимптотою А, її відбиття в А дає пов'язану гіперболу. Будь-який діаметр початкової гіперболи відбивається в . У теорії відносності напрямки, задані спряженими діаметрами, беруться в за просторові й часові осі. Як писав 1910 року E. Т. Віттакер, «гіпербола не змінюється, якщо будь-яка пара спряжених діаметрів приймається за нові осі, а нова одиниця довжини береться пропорційно довжині будь-якого з цих діаметрів». На цьому принципі відносності він потім написав перетворення Лоренца в сучасній формі з використанням поняття стрімкість. і Гілберт Н. Льюїс розробили 1912 року концепцію в рамках синтетичної геометрії. Вони відзначають, що «в нашій площині жодна пара перпендикулярних гіперболічно ортогональних ліній не підходить як осі координат краще, ніж будь-яка інша пара». Поняття гіперболічної ортогональності виникло в аналітичній геометрії з урахуванням спряжених діаметрів еліпсів і гіпербол. Якщо g і g' - кутові коефіцієнти пов'язаних діаметрів, то в разі еліпса і в разі гіперболи. Якщо a = b, еліпс являє собою коло, спряжені діаметри перпендикулярні, гіпербола — прямокутна, а спряжені діаметри — гіперболічно ортогональні. У термінології проєктивної геометрії операція взяття гіперболічної ортогональної лінії є інволюція. Припустимо, що кутовий коефіцієнт вертикальної лінії позначено як ∞, тоді всі лінії мають кутовий коефіцієнт у проєктивно розширеній числовій прямій. Потім, залежно від того, яка з гіпербол (A) чи (B) використовується, операція є прикладом гіперболічної інволюції, де асимптота інваріантна. (uk)
- Гиперболическая ортогональность — понятие в Евклидовой геометрии. Две линии называются гиперболически ортогональными, когда они являются отражением друг от друга по асимптоте данной гиперболы. На плоскости часто используются две особые гиперболы: (A) xy = 1 при y = 0 как асимптота.При отражении по оси x, линия y = mx становится y = -mx .В этом случае линии являются гиперболическими ортогональными, если их угловые коэффициенты являются противоположными числами.(B) x2 — y2 = 1 при y = x как асимптота.Для линий y = mx при −1 < m < 1, когда x = 1/m, то y = 1.Точка (1/m , 1) на линии отражается через y = x в (1, 1/m).Поэтому отраженная линия имеет наклон 1/m, а угловые коэффициенты гиперболических ортогональных линий — обратные друг для друга. Отношение гиперболической ортогональности фактически применяется к классам параллельных прямых на плоскости, где любая конкретная линия может представлять класс. Таким образом, для данной гиперболы и асимптоты A пара прямых (a, b) являются гиперболическими ортогональными, если существует пара (c, d) такая, что , а c — это отражение d через A. Свойство радиуса, ортогонального к касательной на кривой, расширяется от круга на гиперболу при помощи понятия гиперболической ортогональности. С момента появления в 1908 году пространства-времени Минковского была введена концепция гиперболически ортогональных к линии времени (касательная к мировой линии) точек в плоскости пространства-времени, для определения одновременности событий относительно заданной линии времени. В исследовании Минковского используется гипербола типа (B). Два вектора являются нормальными (в смысле гиперболической ортогональности) когда Где c = 1, y и z равны нулю, x ≠ 0, t1 ≠ 0, то . В аналитической геометрии для описания ортогональности используется билинейная форма, причем два элемента ортогональны, когда их билинейная форма обращается в нуль. В плоскости комплексных чисел , билинейная форма есть , тогда как в плоскости гиперболических чисел билинейная форма есть Два вектора z1 и z2 в комплексной плоскости, и w1 и w2 в гиперболической плоскости называются соответственно евклидово ортогональными и гиперболически ортогональными, если их соответствующие внутренние произведения билинейных форм равны нулю. Для данной гиперболы с асимптотой А, ее отражение в А дает сопряженную гиперболу. Любой диаметр исходной гиперболы отражается в сопряженный диаметр. В теории относительности направления, заданные сопряженными диаметрами, берутся в качестве пространственных и временных осей. Как писал E. Т. Уиттакер в 1910 году, «гипербола не изменяется, если любая пара сопряженных диаметров принимается за новые оси, а новая единица длины берется пропорционально длине любого из этих диаметров». На этом принципе относительности он затем написал преобразования Лоренца в современной форме с использованием понятия быстрота. и Гилберт Н. Льюис разработали концепцию в рамках синтетической геометрии в 1912 году. Они отмечают, что «в нашей плоскости ни одна пара перпендикулярных гиперболически-ортогональных линий не подходит в качестве осей координат лучше, чем любая другая пара» Понятие гиперболической ортогональности возникло в аналитической геометрии с учетом сопряженных диаметров эллипсов и гипербол. Если g и g' представляют собой угловые коэффициенты сопряженных диаметров, то в случае эллипса и в случае гиперболы. Если a = b, эллипс представляет собой окружность, сопряженные диаметры перпендикулярны, гипербола — прямоугольная, а сопряженные диаметры — гиперболически ортогональны. В терминологии проективной геометрии операция взятия гиперболической ортогональной линии есть инволюция. Предположим, что угловой коэффициент вертикальной линии обозначен как ∞, тогда все линии имеют угловой коэффициент в проективно расширенной числовой прямой. Затем, в зависимости от того, какая из гипербол (A) или (B) используется, операция является примером гиперболической инволюции, где асимптота инвариантна. (ru)
|
rdfs:comment
|
- In geometry, the relation of hyperbolic orthogonality between two lines separated by the asymptotes of a hyperbola is a concept used in special relativity to define simultaneous events. Two events will be simultaneous when they are on a line hyperbolically orthogonal to a particular time line. This dependence on a certain time line is determined by velocity, and is the basis for the relativity of simultaneity. (en)
- Гиперболическая ортогональность — понятие в Евклидовой геометрии. Две линии называются гиперболически ортогональными, когда они являются отражением друг от друга по асимптоте данной гиперболы. На плоскости часто используются две особые гиперболы: Отношение гиперболической ортогональности фактически применяется к классам параллельных прямых на плоскости, где любая конкретная линия может представлять класс. Таким образом, для данной гиперболы и асимптоты A пара прямых (a, b) являются гиперболическими ортогональными, если существует пара (c, d) такая, что , а c — это отражение d через A. (ru)
- Гіперболічна ортогональність — поняття в евклідовій геометрії. Дві лінії називаються гіперболічно ортогональними, якщо вони є відбиттям одна одної відносно асимптоти даної гіперболи. На площині часто використовують дві особливі гіперболи: Відношення гіперболічної ортогональності фактично застосовується до класів паралельних прямих на площині, де будь-яка конкретна лінія може представляти клас. Таким чином, для даної гіперболи і асимптоти A пара прямих (a, b) є гіперболічно ортогональними, якщо існує пара (c, d) така, що , а c — це відбиття d відносно A. (uk)
|