dbo:abstract
|
- In the area of modern algebra known as group theory, the Higman–Sims group HS is a sporadic simple group of order 29⋅32⋅53⋅7⋅11 = 44352000≈ 4×107. The Schur multiplier has order 2, the outer automorphism group has order 2, and the group 2.HS.2 appears as an involution centralizer in the Harada–Norton group. (en)
- En mathématiques, le groupe de Higman–Sims est un groupe sporadique simple fini d'ordre 29 · 32 · 53 · 7 · 11 = 44 352 000. Il peut être caractérisé comme le sous-groupe simple d'indice 2 dans le groupe des automorphismes du graphe de Higman-Sims. Le graphe de Higman–Sims possède 100 sommets, donc le groupe de Higman-Sims, ou , a une représentation de permutation de degré 100. est nommé ainsi en l'honneur des mathématiciens Donald G. Higman et Charles Sims, qui le découvrirent en 1967, alors qu'ils assistaient à une présentation par Marshall Hall du (en), qui possède une représentation de degré 100, avec des orbites de cardinal 1, 36 et 63. Ils firent le rapprochement avec le groupe de Mathieu , qui possède aussi une représentation de degré 100, avec des orbites de cardinal 1, 22 et 77. Le système de Steiner possède 77 blocs. Rapidement, ils trouvèrent , avec un stabilisateur d'un point isomorphe à . « Higman » peut aussi faire référence au mathématicien Graham Higman de l'université d'Oxford qui découvrit simultanément le groupe comme le groupe d'automorphismes d'une certaine « géométrie » sur 176 points. En conséquence, possède une représentation doublement transitive de degré 176. (fr)
|
rdfs:comment
|
- In the area of modern algebra known as group theory, the Higman–Sims group HS is a sporadic simple group of order 29⋅32⋅53⋅7⋅11 = 44352000≈ 4×107. The Schur multiplier has order 2, the outer automorphism group has order 2, and the group 2.HS.2 appears as an involution centralizer in the Harada–Norton group. (en)
- En mathématiques, le groupe de Higman–Sims est un groupe sporadique simple fini d'ordre 29 · 32 · 53 · 7 · 11 = 44 352 000. Il peut être caractérisé comme le sous-groupe simple d'indice 2 dans le groupe des automorphismes du graphe de Higman-Sims. Le graphe de Higman–Sims possède 100 sommets, donc le groupe de Higman-Sims, ou , a une représentation de permutation de degré 100. (fr)
|