An Entity of Type: building, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org:8891

In mathematical representation theory, a good filtration is a filtration of a representation of a reductive algebraic group G such that the subquotients are isomorphic to the spaces of sections F(λ) of line bundles λ over G/B for a Borel subgroup B. In characteristic 0 this is automatically true as the irreducible modules are all of the form F(λ), but this is not usually true in positive characteristic. showed that the tensor product of two modules F(λ)⊗F(μ) has a good filtration, completing the results of who proved it in most cases and who proved it in large characteristic. showed that the existence of good filtrations for these tensor products also follows from standard monomial theory.

Property Value
dbo:abstract
  • In mathematical representation theory, a good filtration is a filtration of a representation of a reductive algebraic group G such that the subquotients are isomorphic to the spaces of sections F(λ) of line bundles λ over G/B for a Borel subgroup B. In characteristic 0 this is automatically true as the irreducible modules are all of the form F(λ), but this is not usually true in positive characteristic. showed that the tensor product of two modules F(λ)⊗F(μ) has a good filtration, completing the results of who proved it in most cases and who proved it in large characteristic. showed that the existence of good filtrations for these tensor products also follows from standard monomial theory. (en)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 37479627 (xsd:integer)
dbo:wikiPageLength
  • 2367 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1032089980 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • In mathematical representation theory, a good filtration is a filtration of a representation of a reductive algebraic group G such that the subquotients are isomorphic to the spaces of sections F(λ) of line bundles λ over G/B for a Borel subgroup B. In characteristic 0 this is automatically true as the irreducible modules are all of the form F(λ), but this is not usually true in positive characteristic. showed that the tensor product of two modules F(λ)⊗F(μ) has a good filtration, completing the results of who proved it in most cases and who proved it in large characteristic. showed that the existence of good filtrations for these tensor products also follows from standard monomial theory. (en)
rdfs:label
  • Good filtration (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License