About: GIT quotient

An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org:8891

In algebraic geometry, an affine GIT quotient, or affine geometric invariant theory quotient, of an affine scheme with an action by a group scheme G is the affine scheme , the prime spectrum of the ring of invariants of A, and is denoted by . A GIT quotient is a categorical quotient: any invariant morphism uniquely factors through it. Taking Proj (of a graded ring) instead of , one obtains a projective GIT quotient (which is a quotient of the set of semistable points.) for an algebraic group G over a field k and closed subgroup H.

Property Value
dbo:abstract
  • In algebraic geometry, an affine GIT quotient, or affine geometric invariant theory quotient, of an affine scheme with an action by a group scheme G is the affine scheme , the prime spectrum of the ring of invariants of A, and is denoted by . A GIT quotient is a categorical quotient: any invariant morphism uniquely factors through it. Taking Proj (of a graded ring) instead of , one obtains a projective GIT quotient (which is a quotient of the set of semistable points.) A GIT quotient is a categorical quotient of the locus of semistable points; i.e., "the" quotient of the semistable locus. Since the categorical quotient is unique, if there is a geometric quotient, then the two notions coincide: for example, one has for an algebraic group G over a field k and closed subgroup H. If X is a complex smooth projective variety and if G is a reductive complex Lie group, then the GIT quotient of X by G is homeomorphic to the symplectic quotient of X by a maximal compact subgroup of G (Kempf–Ness theorem). (en)
  • 대수기하학에서 기하 불변량 이론 몫(幾何不變量理論몫, 영어: geometric invariant theory [GIT] quotient)은 대수군이 작용하는 대수다양체가 주어졌을 때, 이에 대한 몫을 정의하는 방법이다. 이 경우, 일부 ‘매우 나쁜’ 점들(준안정점이 아닌 점)을 버리게 되며, 또한 일부 ‘조금 나쁜’ 점(안정점이 아닌 준안정점)의 경우 해당 상의 원상이 궤도 전체가 아닐 수 있다. (ko)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 41139312 (xsd:integer)
dbo:wikiPageLength
  • 9639 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1102391780 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • 대수기하학에서 기하 불변량 이론 몫(幾何不變量理論몫, 영어: geometric invariant theory [GIT] quotient)은 대수군이 작용하는 대수다양체가 주어졌을 때, 이에 대한 몫을 정의하는 방법이다. 이 경우, 일부 ‘매우 나쁜’ 점들(준안정점이 아닌 점)을 버리게 되며, 또한 일부 ‘조금 나쁜’ 점(안정점이 아닌 준안정점)의 경우 해당 상의 원상이 궤도 전체가 아닐 수 있다. (ko)
  • In algebraic geometry, an affine GIT quotient, or affine geometric invariant theory quotient, of an affine scheme with an action by a group scheme G is the affine scheme , the prime spectrum of the ring of invariants of A, and is denoted by . A GIT quotient is a categorical quotient: any invariant morphism uniquely factors through it. Taking Proj (of a graded ring) instead of , one obtains a projective GIT quotient (which is a quotient of the set of semistable points.) for an algebraic group G over a field k and closed subgroup H. (en)
rdfs:label
  • GIT quotient (en)
  • 기하 불변량 이론 몫 (ko)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License