An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org:8891

In mathematics, a genus g surface (also known as a g-torus or g-holed torus) is a surface formed by the connected sum of g many tori: the interior of a disk is removed from each of g many tori and the boundaries of the g many disks are identified (glued together), forming a g-torus. The genus of such a surface is g. A genus g surface is a two-dimensional manifold. The classification theorem for surfaces states that every compact connected two-dimensional manifold is homeomorphic to either the sphere, the connected sum of tori, or the connected sum of real projective planes.

Property Value
dbo:abstract
  • En matemáticas, una superficie de genus g (también conocida como superficie de género g, g-toro o toro con g orificios) es un un tipo de superficie formada por la suma conexa de g toros: se extrae el interior de un disco de cada uno de los g elementos conexos delimitando superficies toroidales, que una vez pegadas exteriormente sin alterar el número total de orificios permiten formar un g-toro. El genus de tal superficie es g. Una superficie de género g es una variedad bidimensional. El teorema de clasificación de superficies establece que cada variedad bidimensional compacta y conexa es homeomórfica con respecto a la esfera, a la suma conexa de toros o a la suma conexa de planos proyectivos reales. (es)
  • In mathematics, a genus g surface (also known as a g-torus or g-holed torus) is a surface formed by the connected sum of g many tori: the interior of a disk is removed from each of g many tori and the boundaries of the g many disks are identified (glued together), forming a g-torus. The genus of such a surface is g. A genus g surface is a two-dimensional manifold. The classification theorem for surfaces states that every compact connected two-dimensional manifold is homeomorphic to either the sphere, the connected sum of tori, or the connected sum of real projective planes. (en)
dbo:thumbnail
dbo:wikiPageID
  • 60481511 (xsd:integer)
dbo:wikiPageLength
  • 5993 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1090011171 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • In mathematics, a genus g surface (also known as a g-torus or g-holed torus) is a surface formed by the connected sum of g many tori: the interior of a disk is removed from each of g many tori and the boundaries of the g many disks are identified (glued together), forming a g-torus. The genus of such a surface is g. A genus g surface is a two-dimensional manifold. The classification theorem for surfaces states that every compact connected two-dimensional manifold is homeomorphic to either the sphere, the connected sum of tori, or the connected sum of real projective planes. (en)
  • En matemáticas, una superficie de genus g (también conocida como superficie de género g, g-toro o toro con g orificios) es un un tipo de superficie formada por la suma conexa de g toros: se extrae el interior de un disco de cada uno de los g elementos conexos delimitando superficies toroidales, que una vez pegadas exteriormente sin alterar el número total de orificios permiten formar un g-toro. El genus de tal superficie es g. (es)
rdfs:label
  • Superficie de genus g (es)
  • Genus g surface (en)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License