dbo:abstract
|
- In the renormalization group analysis of phase transitions in physics, a critical dimension is the dimensionality of space at which the character of the phase transition changes. Below the lower critical dimension there is no phase transition. Above the upper critical dimension the critical exponents of the theory become the same as that in mean field theory. An elegant criterion to obtain the critical dimension within mean field theory is due to V. Ginzburg. Since the renormalization group sets up a relation between a phase transition and a quantum field theory, this has implications for the latter and for our larger understanding of renormalization in general. Above the upper critical dimension, the quantum field theory which belongs to the model of the phase transition is a free field theory. Below the lower critical dimension, there is no field theory corresponding to the model. In the context of string theory the meaning is more restricted: the critical dimension is the dimension at which string theory is consistent assuming a constant dilaton background without additional confounding permutations from background radiation effects. The precise number may be determined by the required cancellation of conformal anomaly on the worldsheet; it is 26 for the bosonic string theory and 10 for superstring theory. (en)
- La théorie des cordes étant formulée classiquement comme un modèle sigma non linéaire, la nécessité d'annuler l'anomalie conforme pour obtenir une théorie unitaire (i.e. consistante) après quantification aboutit à une contrainte sur la dimensionalité de l'espace-cible du modèle-sigma qu'on appelle la dimension critique :
* dans le cas de la théorie des cordes bosoniques cette dimension critique est 26 ;
* pour les supercordes elle vaut 10 ;
* pour la théorie de Liouville elle vaut 2.
* Portail de la physique (fr)
|
dbo:thumbnail
| |
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 10516 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
gold:hypernym
| |
rdf:type
| |
rdfs:comment
|
- La théorie des cordes étant formulée classiquement comme un modèle sigma non linéaire, la nécessité d'annuler l'anomalie conforme pour obtenir une théorie unitaire (i.e. consistante) après quantification aboutit à une contrainte sur la dimensionalité de l'espace-cible du modèle-sigma qu'on appelle la dimension critique :
* dans le cas de la théorie des cordes bosoniques cette dimension critique est 26 ;
* pour les supercordes elle vaut 10 ;
* pour la théorie de Liouville elle vaut 2.
* Portail de la physique (fr)
- In the renormalization group analysis of phase transitions in physics, a critical dimension is the dimensionality of space at which the character of the phase transition changes. Below the lower critical dimension there is no phase transition. Above the upper critical dimension the critical exponents of the theory become the same as that in mean field theory. An elegant criterion to obtain the critical dimension within mean field theory is due to V. Ginzburg. (en)
|
rdfs:label
|
- Critical dimension (en)
- Dimension critique (fr)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:depiction
| |
foaf:isPrimaryTopicOf
| |
is dbo:knownFor
of | |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |