dbo:abstract
|
- In mathematics, especially in order theory, a complete Heyting algebra is a Heyting algebra that is complete as a lattice. Complete Heyting algebras are the objects of three different categories; the category CHey, the category Loc of locales, and its opposite, the category Frm of frames. Although these three categories contain the same objects, they differ in their morphisms, and thus get distinct names. Only the morphisms of CHey are homomorphisms of complete Heyting algebras. Locales and frames form the foundation of pointless topology, which, instead of building on point-set topology, recasts the ideas of general topology in categorical terms, as statements on frames and locales. (en)
- 일반위상수학에서 장소(場所, 영어: locale 로케일[*])는 위상 공간의 열린집합의 부분 순서 집합을 추상화한 구조이다. 장소의 범주의 대상은 완비 헤이팅 대수와 같지만, 장소의 사상은 헤이팅 대수의 사상과 다르다. (ko)
- 在数学特别是序理论中,完全海廷代数是作为格的海廷代数。完全海廷代数是三个不同范畴的对象,它们是范畴CHey,locales的范畴Loc,它的frames的范畴Frm。 (zh)
|
rdfs:comment
|
- 일반위상수학에서 장소(場所, 영어: locale 로케일[*])는 위상 공간의 열린집합의 부분 순서 집합을 추상화한 구조이다. 장소의 범주의 대상은 완비 헤이팅 대수와 같지만, 장소의 사상은 헤이팅 대수의 사상과 다르다. (ko)
- 在数学特别是序理论中,完全海廷代数是作为格的海廷代数。完全海廷代数是三个不同范畴的对象,它们是范畴CHey,locales的范畴Loc,它的frames的范畴Frm。 (zh)
- In mathematics, especially in order theory, a complete Heyting algebra is a Heyting algebra that is complete as a lattice. Complete Heyting algebras are the objects of three different categories; the category CHey, the category Loc of locales, and its opposite, the category Frm of frames. Although these three categories contain the same objects, they differ in their morphisms, and thus get distinct names. Only the morphisms of CHey are homomorphisms of complete Heyting algebras. (en)
|