An Entity of Type: Manifold103717750, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org:8891

In mathematics, a branched manifold is a generalization of a differentiable manifold which may have singularities of very restricted type and admits a well-defined tangent space at each point. A branched n-manifold is covered by n-dimensional "coordinate charts", each of which involves one or several "branches" homeomorphically projecting into the same differentiable n-disk in Rn. Branched manifolds first appeared in the dynamical systems theory, in connection with one-dimensional hyperbolic attractors constructed by Smale and were formalized by R. F. Williams in a series of papers on expanding attractors. Special cases of low dimensions are known as train tracks (n = 1) and branched surfaces (n = 2) and play prominent role in the geometry of three-manifolds after Thurston.

Property Value
dbo:abstract
  • In mathematics, a branched manifold is a generalization of a differentiable manifold which may have singularities of very restricted type and admits a well-defined tangent space at each point. A branched n-manifold is covered by n-dimensional "coordinate charts", each of which involves one or several "branches" homeomorphically projecting into the same differentiable n-disk in Rn. Branched manifolds first appeared in the dynamical systems theory, in connection with one-dimensional hyperbolic attractors constructed by Smale and were formalized by R. F. Williams in a series of papers on expanding attractors. Special cases of low dimensions are known as train tracks (n = 1) and branched surfaces (n = 2) and play prominent role in the geometry of three-manifolds after Thurston. (en)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 1277369 (xsd:integer)
dbo:wikiPageLength
  • 4806 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1013324371 (xsd:integer)
dbo:wikiPageWikiLink
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • In mathematics, a branched manifold is a generalization of a differentiable manifold which may have singularities of very restricted type and admits a well-defined tangent space at each point. A branched n-manifold is covered by n-dimensional "coordinate charts", each of which involves one or several "branches" homeomorphically projecting into the same differentiable n-disk in Rn. Branched manifolds first appeared in the dynamical systems theory, in connection with one-dimensional hyperbolic attractors constructed by Smale and were formalized by R. F. Williams in a series of papers on expanding attractors. Special cases of low dimensions are known as train tracks (n = 1) and branched surfaces (n = 2) and play prominent role in the geometry of three-manifolds after Thurston. (en)
rdfs:label
  • Branched manifold (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License