An Entity of Type: SocialGroup107950920, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org:8891

In graph theory, a biconnected graph is a connected and "nonseparable" graph, meaning that if any one vertex were to be removed, the graph will remain connected. Therefore a biconnected graph has no articulation vertices. The property of being 2-connected is equivalent to biconnectivity, except that the complete graph of two vertices is usually not regarded as 2-connected. This property is especially useful in maintaining a graph with a two-fold redundancy, to prevent disconnection upon the removal of a single edge (or connection).

Property Value
dbo:abstract
  • In graph theory, a biconnected graph is a connected and "nonseparable" graph, meaning that if any one vertex were to be removed, the graph will remain connected. Therefore a biconnected graph has no articulation vertices. The property of being 2-connected is equivalent to biconnectivity, except that the complete graph of two vertices is usually not regarded as 2-connected. This property is especially useful in maintaining a graph with a two-fold redundancy, to prevent disconnection upon the removal of a single edge (or connection). The use of biconnected graphs is very important in the field of networking (see Network flow), because of this property of redundancy. (en)
  • 数学のグラフ理論における2重連結グラフ(2じゅうれんけつグラフ、英: biconnected graph)とは、任意の頂点が取り除かれても連結であるという意味で「分離不可能」なグラフのことを言う。したがって、2重連結グラフにはは存在しない。 2-連結であるという性質は、2重連結性と基本的に同値である。ただし、二つの頂点からなる完全グラフはしばしば、2重連結であるが2-連結ではないと見なされることに注意されたい。 この性質は特に、一つの辺(あるいは、接続)を取り除く際の非連結を防ぐための、グラフの2重冗長性を維持する上で有用である。 この冗長性に関する性質により、2重連結グラフは、ネットワークの分野(フローネットワークを参照されたい)において非常に重要となる。 (ja)
  • В теории графов двусвязный граф — это связный и неделимый граф, в том смысле, что удаление любой вершины не приведёт к потере связности. Теорема Уитни утверждает, в частности, что граф двусвязен тогда и только тогда, когда между любыми двумя его вершинами есть минимум два непересекающихся пути. Таким образом, двусвязный граф не имеет шарниров. Это свойство особенно полезно при рассмотрении графов с двойным резервированием, чтобы избежать разрыва при удалении единственного ребра. Использование двусвязных графов очень важно в области сетей (смотри транспортные сети) ввиду их свойств резервирования. (ru)
  • У теорії графів двозв'язний граф — це зв'язний і неподільний граф, в тому сенсі, що видалення будь-якої вершини не призведе до втрати зв'язності. Таким чином, двозв'язний граф не має шарнірів. Властивість вершинної 2-зв'язності еквівалентна двозв'язності графу з одним винятком — повний граф з двома вершинами іноді вважається двозв'язним, але не вершинно-двозв'язним. Ця властивість особливо корисна при розгляді графів з подвійним резервуванням, щоб уникнути розриву при видаленні єдиного ребра. Використання двозв'язних графів дуже важливо в області мереж (дивись потокова мережа), зважаючи на притаманну їм властивість резервування. (uk)
  • 在图论中,一个点双连通图是一个连通且“不可分离”的图,意思是如果任何一个顶点被去除,图仍是连通的。所以这样一个双连通图就没有。的性质和点双连通是几乎等价的,除了一条边连接两个点构成的图,它是点双连通的,但不是2-点连通的。 这个性质在维护一个有2度冗余的图中特别有用,为了防止去除一条边(或连接)之后的不连通。 由于冗余的这种特性,双连通图的使用在网络领域非常重要(参见网络流)。 (zh)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 4989397 (xsd:integer)
dbo:wikiPageLength
  • 3035 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1123654962 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • 数学のグラフ理論における2重連結グラフ(2じゅうれんけつグラフ、英: biconnected graph)とは、任意の頂点が取り除かれても連結であるという意味で「分離不可能」なグラフのことを言う。したがって、2重連結グラフにはは存在しない。 2-連結であるという性質は、2重連結性と基本的に同値である。ただし、二つの頂点からなる完全グラフはしばしば、2重連結であるが2-連結ではないと見なされることに注意されたい。 この性質は特に、一つの辺(あるいは、接続)を取り除く際の非連結を防ぐための、グラフの2重冗長性を維持する上で有用である。 この冗長性に関する性質により、2重連結グラフは、ネットワークの分野(フローネットワークを参照されたい)において非常に重要となる。 (ja)
  • 在图论中,一个点双连通图是一个连通且“不可分离”的图,意思是如果任何一个顶点被去除,图仍是连通的。所以这样一个双连通图就没有。的性质和点双连通是几乎等价的,除了一条边连接两个点构成的图,它是点双连通的,但不是2-点连通的。 这个性质在维护一个有2度冗余的图中特别有用,为了防止去除一条边(或连接)之后的不连通。 由于冗余的这种特性,双连通图的使用在网络领域非常重要(参见网络流)。 (zh)
  • In graph theory, a biconnected graph is a connected and "nonseparable" graph, meaning that if any one vertex were to be removed, the graph will remain connected. Therefore a biconnected graph has no articulation vertices. The property of being 2-connected is equivalent to biconnectivity, except that the complete graph of two vertices is usually not regarded as 2-connected. This property is especially useful in maintaining a graph with a two-fold redundancy, to prevent disconnection upon the removal of a single edge (or connection). (en)
  • В теории графов двусвязный граф — это связный и неделимый граф, в том смысле, что удаление любой вершины не приведёт к потере связности. Теорема Уитни утверждает, в частности, что граф двусвязен тогда и только тогда, когда между любыми двумя его вершинами есть минимум два непересекающихся пути. Таким образом, двусвязный граф не имеет шарниров. Это свойство особенно полезно при рассмотрении графов с двойным резервированием, чтобы избежать разрыва при удалении единственного ребра. (ru)
  • У теорії графів двозв'язний граф — це зв'язний і неподільний граф, в тому сенсі, що видалення будь-якої вершини не призведе до втрати зв'язності. Таким чином, двозв'язний граф не має шарнірів. Властивість вершинної 2-зв'язності еквівалентна двозв'язності графу з одним винятком — повний граф з двома вершинами іноді вважається двозв'язним, але не вершинно-двозв'язним. (uk)
rdfs:label
  • Biconnected graph (en)
  • 2重連結グラフ (ja)
  • Двусвязный граф (ru)
  • 双连通图 (zh)
  • Двозв'язний граф (uk)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:properties of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License