About: Moser–de Bruijn sequence     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.org:8891 associated with source document(s)
QRcode icon
http://dbpedia.org:8891/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FMoser%E2%80%93de_Bruijn_sequence

In number theory, the Moser–de Bruijn sequence is an integer sequence named after Leo Moser and Nicolaas Govert de Bruijn, consisting of the sums of distinct powers of 4, or equivalently the numbers whose binary representations are nonzero only in even positions. A simple recurrence relation allows values of the Moser–de Bruijn sequence to be calculated from earlier values, and can be used to prove that the Moser–de Bruijn sequence is a 2-regular sequence.

AttributesValues
rdf:type
rdfs:label
  • Moser–de Bruijn sequence (en)
rdfs:comment
  • In number theory, the Moser–de Bruijn sequence is an integer sequence named after Leo Moser and Nicolaas Govert de Bruijn, consisting of the sums of distinct powers of 4, or equivalently the numbers whose binary representations are nonzero only in even positions. A simple recurrence relation allows values of the Moser–de Bruijn sequence to be calculated from earlier values, and can be used to prove that the Moser–de Bruijn sequence is a 2-regular sequence. (en)
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/Moser–de_Bruijn_addition.svg
  • http://commons.wikimedia.org/wiki/Special:FilePath/Moser–de_Bruijn_counts.svg
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
thumbnail
id
  • Moser-deBruijnSequence (en)
title
  • Moser–De Bruijn Sequence (en)
mode
  • cs2 (en)
has abstract
  • In number theory, the Moser–de Bruijn sequence is an integer sequence named after Leo Moser and Nicolaas Govert de Bruijn, consisting of the sums of distinct powers of 4, or equivalently the numbers whose binary representations are nonzero only in even positions. These numbers grow in proportion to the square numbers, and are the squares for a modified form of arithmetic without carrying. When the values in the sequence are doubled, their differences are all non-square. Every non-negative integer has a unique representation as the sum of a sequence member and a doubled sequence member. This decomposition into sums can be used to define a bijection between the integers and pairs of integers, to define coordinates for the Z-order curve, and to construct inverse pairs of transcendental numbers with simple decimal representations. A simple recurrence relation allows values of the Moser–de Bruijn sequence to be calculated from earlier values, and can be used to prove that the Moser–de Bruijn sequence is a 2-regular sequence. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (62 GB total memory, 43 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software