Browse using
OpenLink Faceted Browser
OpenLink Structured Data Editor
LodLive Browser
Formats
RDF:
N-Triples
N3
Turtle
JSON
XML
OData:
Atom
JSON
Microdata:
JSON
HTML
Embedded:
JSON
Turtle
Other:
CSV
JSON-LD
Faceted Browser
Sparql Endpoint
About:
http://dbpedia.org/class/yago/MathematicalProof106647864
An Entity of Type:
Thing
,
from Named Graph:
http://dbpedia.org
,
within Data Space:
dbpedia.org:8891
Property
Value
rdfs:
subClassOf
yago
:Proof106647614
owl:
equivalentClass
yago-res
:wordnet_mathematical_proof_106647864
owl:
sameAs
yago
:MathematicalProof106647864
is
rdf:
type
of
dbr
:Probabilistic_method
dbr
:Proof_by_intimidation
dbr
:Proof_of_impossibility
dbr
:Proof_sketch_for_Gödel's_first_incompleteness_theorem
dbr
:Proofs_of_Fermat's_little_theorem
dbr
:Q.E.D.
dbr
:Elementary_proof
dbr
:Moulton_plane
dbr
:Viète's_formula
dbr
:Double_counting_(proof_technique)
dbr
:List_of_probabilistic_proofs_of_non-probabilistic_theorems
dbr
:Transfinite_induction
dbr
:Presburger_arithmetic
dbr
:Proof_by_infinite_descent
dbr
:Proof_of_Bertrand's_postulate
dbr
:Computer-assisted_proof
dbr
:Mathematical_induction
dbr
:Georg_Cantor's_first_set_theory_article
dbr
:Conditional_proof
dbr
:Constructive_proof
dbr
:Structural_induction
dbr
:Combinatorial_proof
dbr
:Furstenberg's_proof_of_the_infinitude_of_primes
dbr
:Probabilistically_checkable_proof
dbr
:Mathematical_fallacy
dbr
:Turing's_proof
dbr
:Minimal_counterexample
dbr
:Proof_without_words
dbr
:Direct_proof
dbr
:Formal_proof
dbr
:Proof_by_contradiction
dbr
:Proof_by_exhaustion
dbr
:Back-and-forth_method
dbr
:Bijective_proof
dbr
:Tombstone_(typography)
dbr
:Divergence_of_the_sum_of_the_reciprocals_of_the_primes
dbr
:Pigeonhole_principle
dbr
:Circular_reference
dbr
:Original_proof_of_Gödel's_completeness_theorem
dbr
:Cantor's_diagonal_argument
dbr
:Cantor's_paradox
dbr
:Without_loss_of_generality
dbr
:Of_the_form
dbr
:Proof_that_e_is_irrational
dbr
:Wallis_product
dbr
:Proof_by_contrapositive
is
rdfs:
subClassOf
of
yago
:WikicatMathematicalProofs
This content was extracted from
Wikipedia
and is licensed under the
Creative Commons Attribution-ShareAlike 3.0 Unported License