This HTML5 document contains 56 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n11https://books.google.com/
n16https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
n21http://dbpedia.org/resource/1:
dbpedia-svhttp://sv.dbpedia.org/resource/
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
n8http://gdz.sub.uni-goettingen.de/dms/load/img/
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
goldhttp://purl.org/linguistics/gold/
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Weber's_theorem
rdf:type
yago:Message106598915 yago:Proposition106750804 yago:Abstraction100002137 yago:Attribute100024264 yago:Curve113867641 yago:Statement106722453 yago:Theorem106752293 yago:Line113863771 yago:Communication100033020 yago:WikicatAlgebraicCurves yago:Shape100027807 yago:WikicatTheoremsInAlgebraicGeometry
rdfs:label
Weber's theorem Webers sats
rdfs:comment
In mathematics, Weber's theorem, named after Heinrich Martin Weber, is a result on algebraic curves. It states the following. Consider two non-singular curves C and C′ having the same genus g > 1. If there is a rational correspondence φ between C and C′, then φ is a birational transformation. Inom matematiken är Webers sats, uppkallad efter Heinrich Weber, ett resultat om . Satsen lyder: Betrakta två icke-singulära kurvor C och C′ med samma genus g > 1. Om det finns en rationell φ mellan C och C′, då är φ en .
dcterms:subject
dbc:Algebraic_curves dbc:Theorems_in_algebraic_geometry
dbo:wikiPageID
5106285
dbo:wikiPageRevisionID
1013442749
dbo:wikiPageWikiLink
dbr:Crelle's_Journal dbc:Theorems_in_algebraic_geometry dbr:Birational_transformation dbr:Heinrich_Martin_Weber dbr:Genus_(mathematics) dbr:Mathematics dbr:Algebraic_curve n21:1_correspondence dbc:Algebraic_curves
dbo:wikiPageExternalLink
n8:%3FPPN=PPN243919689_0076&DMDID=DMDLOG_0028%7Clanguage=German%7Ctitle=Zur n11:books%3Fid=Y7WEf6V0XwgC&pg=PA135
owl:sameAs
n16:4xUAn freebase:m.0d2xxv dbpedia-sv:Webers_sats wikidata:Q7978735 yago-res:Weber's_theorem
dbp:wikiPageUsesTemplate
dbt:Algebraic_curves_navbox dbt:Cite_journal dbt:Algebraic-geometry-stub dbt:Cite_book dbt:MathWorld
dbp:title
Weber's Theorem
dbp:urlname
WebersTheorem
dbo:abstract
In mathematics, Weber's theorem, named after Heinrich Martin Weber, is a result on algebraic curves. It states the following. Consider two non-singular curves C and C′ having the same genus g > 1. If there is a rational correspondence φ between C and C′, then φ is a birational transformation. Inom matematiken är Webers sats, uppkallad efter Heinrich Weber, ett resultat om . Satsen lyder: Betrakta två icke-singulära kurvor C och C′ med samma genus g > 1. Om det finns en rationell φ mellan C och C′, då är φ en .
gold:hypernym
dbr:Result
prov:wasDerivedFrom
wikipedia-en:Weber's_theorem?oldid=1013442749&ns=0
dbo:wikiPageLength
1244
foaf:isPrimaryTopicOf
wikipedia-en:Weber's_theorem
Subject Item
dbr:Algebraic_curve
dbo:wikiPageWikiLink
dbr:Weber's_theorem
Subject Item
dbr:Heidelberg_University_Faculty_of_Mathematics_and_Computer_Science
dbo:wikiPageWikiLink
dbr:Weber's_theorem
Subject Item
dbr:Heinrich_Martin_Weber
dbo:wikiPageWikiLink
dbr:Weber's_theorem
Subject Item
dbr:List_of_theorems
dbo:wikiPageWikiLink
dbr:Weber's_theorem
Subject Item
dbr:Weber's_Theorem
dbo:wikiPageWikiLink
dbr:Weber's_theorem
dbo:wikiPageRedirects
dbr:Weber's_theorem
Subject Item
wikipedia-en:Weber's_theorem
foaf:primaryTopic
dbr:Weber's_theorem