This HTML5 document contains 47 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
n17http://dbpedia.org/resource/File:
foafhttp://xmlns.com/foaf/0.1/
n18https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
n16http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
provhttp://www.w3.org/ns/prov#
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Andrea_Saltelli
dbo:wikiPageWikiLink
dbr:Variance-based_sensitivity_analysis
Subject Item
dbr:Polynomial_chaos
dbo:wikiPageWikiLink
dbr:Variance-based_sensitivity_analysis
Subject Item
dbr:High-dimensional_model_representation
dbo:wikiPageWikiLink
dbr:Variance-based_sensitivity_analysis
Subject Item
dbr:Ilya_M._Sobol
dbo:wikiPageWikiLink
dbr:Variance-based_sensitivity_analysis
Subject Item
dbr:Sensitivity_analysis
dbo:wikiPageWikiLink
dbr:Variance-based_sensitivity_analysis
Subject Item
dbr:Variance-based_sensitivity_analysis
rdfs:label
Variance-based sensitivity analysis
rdfs:comment
Variance-based sensitivity analysis (often referred to as the Sobol method or Sobol indices, after Ilya M. Sobol) is a form of global sensitivity analysis. Working within a probabilistic framework, it decomposes the variance of the output of the model or system into fractions which can be attributed to inputs or sets of inputs. For example, given a model with two inputs and one output, one might find that 70% of the output variance is caused by the variance in the first input, 20% by the variance in the second, and 10% due to interactions between the two. These percentages are directly interpreted as measures of sensitivity. Variance-based measures of sensitivity are attractive because they measure sensitivity across the whole input space (i.e. it is a global method), they can deal with no
foaf:depiction
n16:Construction_of_ABi_matrices_in_monte_carlo_estimation_of_sensitivity_indices.png
dcterms:subject
dbc:Sensitivity_analysis dbc:Mathematical_modeling
dbo:wikiPageID
37456405
dbo:wikiPageRevisionID
1118577641
dbo:wikiPageWikiLink
dbr:Variance dbc:Sensitivity_analysis dbr:Quasi-Monte_Carlo_method dbr:Uniform_distribution_(continuous) dbr:Latin_hypercube_sampling dbc:Mathematical_modeling dbr:Black_box dbr:Sobol_sequence dbr:Ilya_M._Sobol dbr:Additive_map dbr:Square-integrable_function dbr:Orthogonality dbr:Low-discrepancy_sequence dbr:Probability dbr:Interaction_(statistics) dbr:Independence_(probability_theory) dbr:Nonlinear dbr:Main_effect dbr:Mathematical_model dbr:Monte_Carlo_method n17:Construction_of_ABi_matrices_in_monte_carlo_estimation_of_sensitivity_indices.png dbr:Sensitivity_analysis dbr:Pseudorandom_number_generator
owl:sameAs
wikidata:Q7915756 freebase:m.0nb83h8 n18:4xqMF
dbp:wikiPageUsesTemplate
dbt:Reflist
dbo:thumbnail
n16:Construction_of_ABi_matrices_in_monte_carlo_estimation_of_sensitivity_indices.png?width=300
dbo:abstract
Variance-based sensitivity analysis (often referred to as the Sobol method or Sobol indices, after Ilya M. Sobol) is a form of global sensitivity analysis. Working within a probabilistic framework, it decomposes the variance of the output of the model or system into fractions which can be attributed to inputs or sets of inputs. For example, given a model with two inputs and one output, one might find that 70% of the output variance is caused by the variance in the first input, 20% by the variance in the second, and 10% due to interactions between the two. These percentages are directly interpreted as measures of sensitivity. Variance-based measures of sensitivity are attractive because they measure sensitivity across the whole input space (i.e. it is a global method), they can deal with nonlinear responses, and they can measure the effect of interactions in non-additive systems.
gold:hypernym
dbr:Form
prov:wasDerivedFrom
wikipedia-en:Variance-based_sensitivity_analysis?oldid=1118577641&ns=0
dbo:wikiPageLength
12584
foaf:isPrimaryTopicOf
wikipedia-en:Variance-based_sensitivity_analysis
Subject Item
dbr:Explained_variation
dbo:wikiPageWikiLink
dbr:Variance-based_sensitivity_analysis
Subject Item
wikipedia-en:Variance-based_sensitivity_analysis
foaf:primaryTopic
dbr:Variance-based_sensitivity_analysis