An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

Variance-based sensitivity analysis (often referred to as the Sobol method or Sobol indices, after Ilya M. Sobol) is a form of global sensitivity analysis. Working within a probabilistic framework, it decomposes the variance of the output of the model or system into fractions which can be attributed to inputs or sets of inputs. For example, given a model with two inputs and one output, one might find that 70% of the output variance is caused by the variance in the first input, 20% by the variance in the second, and 10% due to interactions between the two. These percentages are directly interpreted as measures of sensitivity. Variance-based measures of sensitivity are attractive because they measure sensitivity across the whole input space (i.e. it is a global method), they can deal with no

Property Value
dbo:abstract
  • Variance-based sensitivity analysis (often referred to as the Sobol method or Sobol indices, after Ilya M. Sobol) is a form of global sensitivity analysis. Working within a probabilistic framework, it decomposes the variance of the output of the model or system into fractions which can be attributed to inputs or sets of inputs. For example, given a model with two inputs and one output, one might find that 70% of the output variance is caused by the variance in the first input, 20% by the variance in the second, and 10% due to interactions between the two. These percentages are directly interpreted as measures of sensitivity. Variance-based measures of sensitivity are attractive because they measure sensitivity across the whole input space (i.e. it is a global method), they can deal with nonlinear responses, and they can measure the effect of interactions in non-additive systems. (en)
dbo:thumbnail
dbo:wikiPageID
  • 37456405 (xsd:integer)
dbo:wikiPageLength
  • 12584 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1118577641 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdfs:comment
  • Variance-based sensitivity analysis (often referred to as the Sobol method or Sobol indices, after Ilya M. Sobol) is a form of global sensitivity analysis. Working within a probabilistic framework, it decomposes the variance of the output of the model or system into fractions which can be attributed to inputs or sets of inputs. For example, given a model with two inputs and one output, one might find that 70% of the output variance is caused by the variance in the first input, 20% by the variance in the second, and 10% due to interactions between the two. These percentages are directly interpreted as measures of sensitivity. Variance-based measures of sensitivity are attractive because they measure sensitivity across the whole input space (i.e. it is a global method), they can deal with no (en)
rdfs:label
  • Variance-based sensitivity analysis (en)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License