This HTML5 document contains 38 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n13https://global.dbpedia.org/id/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/
n12http://www.sissa.it/cm/phdsection/past_phd_thesis/2011/

Statements

Subject Item
dbr:Giuseppe_Carleo
dbo:wikiPageWikiLink
dbr:Time-dependent_variational_Monte_Carlo
dbp:knownFor
dbr:Time-dependent_variational_Monte_Carlo
Subject Item
dbr:Quantum_Monte_Carlo
dbo:wikiPageWikiLink
dbr:Time-dependent_variational_Monte_Carlo
Subject Item
dbr:Time-dependent_Variational_Monte_Carlo
dbo:wikiPageWikiLink
dbr:Time-dependent_variational_Monte_Carlo
dbo:wikiPageRedirects
dbr:Time-dependent_variational_Monte_Carlo
Subject Item
dbr:Variational_Monte_Carlo
dbo:wikiPageWikiLink
dbr:Time-dependent_variational_Monte_Carlo
Subject Item
dbr:Time-dependent_variational_Monte_Carlo
rdfs:label
Time-dependent variational Monte Carlo
rdfs:comment
The time-dependent variational Monte Carlo (t-VMC) method is a quantum Monte Carlo approach to study the dynamics of closed, non-relativistic quantum systems in the context of the quantum many-body problem. It is an extension of the variational Monte Carlo method, in which a time-dependent pure quantum state is encoded by some variational wave function, generally parametrized as where is the Hamiltonian of the system, are connected averages, and the quantum expectation values are taken over the time-dependent variational wave function, i.e., .
dcterms:subject
dbc:Quantum_Monte_Carlo dbc:Quantum_mechanics
dbo:wikiPageID
44841714
dbo:wikiPageRevisionID
1113928925
dbo:wikiPageWikiLink
dbr:Many-body_problem dbr:Wave_function dbr:Hamiltonian_(quantum_mechanics) dbc:Quantum_Monte_Carlo dbr:Quantum_Monte_Carlo dbr:Variational_principle dbr:Quantum_system dbr:Pure_quantum_state dbr:Monte_Carlo_method dbr:Variational_Monte_Carlo dbr:Probability_distribution dbc:Quantum_mechanics dbr:Metropolis–Hastings_algorithm dbr:Ansatz dbr:Differential_equation
dbo:wikiPageExternalLink
n12:Carleo.pdf
owl:sameAs
freebase:m.012hskbz n13:2ALCH wikidata:Q22909409
dbp:wikiPageUsesTemplate
dbt:Cite_journal dbt:Cite_thesis
dbo:abstract
The time-dependent variational Monte Carlo (t-VMC) method is a quantum Monte Carlo approach to study the dynamics of closed, non-relativistic quantum systems in the context of the quantum many-body problem. It is an extension of the variational Monte Carlo method, in which a time-dependent pure quantum state is encoded by some variational wave function, generally parametrized as where the complex-valued are time-dependent variational parameters, denotes a many-body configuration and are time-independent operators that define the specific ansatz. The time evolution of the parameters can be found upon imposing a variational principle to the wave function. In particular one can show that the optimal parameters for the evolution satisfy at each time the equation of motion where is the Hamiltonian of the system, are connected averages, and the quantum expectation values are taken over the time-dependent variational wave function, i.e., . In analogy with the Variational Monte Carlo approach and following the Monte Carlo method for evaluating integrals, we can interpret as a probability distribution function over the multi-dimensional space spanned by the many-body configurations . The Metropolis–Hastings algorithm is then used to sample exactly from this probability distribution and, at each time , the quantities entering the equation of motion are evaluated as statistical averages over the sampled configurations. The trajectories of the variational parameters are then found upon numerical integration of the associated differential equation.
prov:wasDerivedFrom
wikipedia-en:Time-dependent_variational_Monte_Carlo?oldid=1113928925&ns=0
dbo:wikiPageLength
3424
foaf:isPrimaryTopicOf
wikipedia-en:Time-dependent_variational_Monte_Carlo
Subject Item
wikipedia-en:Time-dependent_variational_Monte_Carlo
foaf:primaryTopic
dbr:Time-dependent_variational_Monte_Carlo