This HTML5 document contains 60 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n20https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
n8http://www.numdam.org/
n13http://www.warwick.ac.uk/~masgaj/book/fulltext/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
n14http://dbpedia.org/resource/PARI/
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Birch_and_Swinnerton-Dyer_conjecture
dbo:wikiPageWikiLink
dbr:Tate's_algorithm
Subject Item
dbr:John_Tate_(mathematician)
dbo:wikiPageWikiLink
dbr:Tate's_algorithm
dbp:knownFor
dbr:Tate's_algorithm
dbo:knownFor
dbr:Tate's_algorithm
Subject Item
dbr:Néron_model
dbo:wikiPageWikiLink
dbr:Tate's_algorithm
Subject Item
dbr:Elliptic_surface
dbo:wikiPageWikiLink
dbr:Tate's_algorithm
Subject Item
dbr:Tate's_algorithm
rdf:type
yago:WikicatEllipticCurves yago:Line113863771 yago:Shape100027807 yago:Abstraction100002137 yago:Attribute100024264 yago:Curve113867641
rdfs:label
Tate's algorithm
rdfs:comment
In the theory of elliptic curves, Tate's algorithm takes as input an of an elliptic curve E over , or more generally an algebraic number field, and a prime or prime ideal p. It returns the exponent fp of p in the conductor of E, the type of reduction at p, the local index where is the group of -pointswhose reduction mod p is a non-singular point. Also, the algorithm determines whether or not the given integral model is minimal at p, and, if not, returns an integral model with integral coefficients for which the valuation at p of the discriminant is minimal.
dcterms:subject
dbc:Number_theory dbc:Elliptic_curves
dbo:wikiPageID
14795246
dbo:wikiPageRevisionID
1119372943
dbo:wikiPageWikiLink
dbr:Prime_ideal dbr:Algorithm dbr:Publications_Mathématiques_de_l'IHÉS dbr:P-adic_valuation dbr:Elliptic_surface dbr:Conductor_of_an_elliptic_curve dbr:Residue_field dbr:Cambridge_University_Press dbr:Springer-Verlag dbr:Graduate_Texts_in_Mathematics n14:GP dbr:Non-singular_point dbc:Number_theory dbr:Elliptic_curves dbr:Perfect_field dbr:Algebraic_number_field dbr:Discrete_valuation_ring dbr:Maximal_ideal dbc:Elliptic_curves dbr:Integral_model dbr:Uniformizing_element
dbo:wikiPageExternalLink
n8:item%3Fid=PMIHES_1964__21__5_0 n13:index.html
owl:sameAs
yago-res:Tate's_algorithm wikidata:Q7687930 freebase:m.03gy5lw n20:4vMie
dbp:txt
yes
dbp:wikiPageUsesTemplate
dbt:Harvs dbt:Citation
dbp:authorlink
John Tate
dbp:first
John
dbp:last
Tate
dbp:year
1975
dbo:abstract
In the theory of elliptic curves, Tate's algorithm takes as input an of an elliptic curve E over , or more generally an algebraic number field, and a prime or prime ideal p. It returns the exponent fp of p in the conductor of E, the type of reduction at p, the local index where is the group of -pointswhose reduction mod p is a non-singular point. Also, the algorithm determines whether or not the given integral model is minimal at p, and, if not, returns an integral model with integral coefficients for which the valuation at p of the discriminant is minimal. Tate's algorithm also gives the structure of the singular fibers given by the Kodaira symbol or Néron symbol, for which, see elliptic surfaces: in turn this determines the exponent fp of the conductor E. Tate's algorithm can be greatly simplified if the characteristic of the residue class field is not 2 or 3; in this case the type and c and f can be read off from the valuations of j and Δ (defined below). Tate's algorithm was introduced by John Tate as an improvement of the description of the Néron model of an elliptic curve by Néron.
prov:wasDerivedFrom
wikipedia-en:Tate's_algorithm?oldid=1119372943&ns=0
dbo:wikiPageLength
7079
foaf:isPrimaryTopicOf
wikipedia-en:Tate's_algorithm
Subject Item
dbr:Semistable_abelian_variety
dbo:wikiPageWikiLink
dbr:Tate's_algorithm
Subject Item
dbr:Conductor_of_an_elliptic_curve
dbo:wikiPageWikiLink
dbr:Tate's_algorithm
Subject Item
dbr:Szpiro's_conjecture
dbo:wikiPageWikiLink
dbr:Tate's_algorithm
Subject Item
wikipedia-en:Tate's_algorithm
foaf:primaryTopic
dbr:Tate's_algorithm