This HTML5 document contains 186 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n4http://dbpedia.org/resource/File:
dbpedia-eshttp://es.dbpedia.org/resource/
n23https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
n20http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
dbpedia-frhttp://fr.dbpedia.org/resource/
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
dbphttp://dbpedia.org/property/
xsdhhttp://www.w3.org/2001/XMLSchema#
dbpedia-idhttp://id.dbpedia.org/resource/
wikidatahttp://www.wikidata.org/entity/
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Nonlinear_equation_system
dbo:wikiPageWikiLink
dbr:System_of_polynomial_equations
dbo:wikiPageRedirects
dbr:System_of_polynomial_equations
Subject Item
dbr:Algebraic_equation
dbo:wikiPageWikiLink
dbr:System_of_polynomial_equations
Subject Item
dbr:Resultant
dbo:wikiPageWikiLink
dbr:System_of_polynomial_equations
Subject Item
dbr:Intersection_(geometry)
dbo:wikiPageWikiLink
dbr:System_of_polynomial_equations
Subject Item
dbr:Numerical_algebraic_geometry
rdfs:seeAlso
dbr:System_of_polynomial_equations
dbo:wikiPageWikiLink
dbr:System_of_polynomial_equations
Subject Item
dbr:Numerical_algorithms_for_solving_polynomial_systems
dbo:wikiPageWikiLink
dbr:System_of_polynomial_equations
dbo:wikiPageRedirects
dbr:System_of_polynomial_equations
Subject Item
dbr:Critical_point_(mathematics)
dbo:wikiPageWikiLink
dbr:System_of_polynomial_equations
Subject Item
dbr:Equation
dbo:wikiPageWikiLink
dbr:System_of_polynomial_equations
Subject Item
dbr:Equation_solving
rdfs:seeAlso
dbr:System_of_polynomial_equations
Subject Item
dbr:GAUSS_(software)
dbo:wikiPageWikiLink
dbr:System_of_polynomial_equations
Subject Item
dbr:Underdetermined_system
dbo:wikiPageWikiLink
dbr:System_of_polynomial_equations
Subject Item
dbr:Systems_of_polynomial_equations
dbo:wikiPageWikiLink
dbr:System_of_polynomial_equations
dbo:wikiPageRedirects
dbr:System_of_polynomial_equations
Subject Item
dbr:Arithmetic_geometry
dbo:wikiPageWikiLink
dbr:System_of_polynomial_equations
Subject Item
dbr:Computational_complexity
dbo:wikiPageWikiLink
dbr:System_of_polynomial_equations
Subject Item
dbr:Main_theorem_of_elimination_theory
dbo:wikiPageWikiLink
dbr:System_of_polynomial_equations
Subject Item
dbr:System_of_equations
dbo:wikiPageWikiLink
dbr:System_of_polynomial_equations
Subject Item
dbr:Algebraic_variety
dbo:wikiPageWikiLink
dbr:System_of_polynomial_equations
Subject Item
dbr:Dimension_of_an_algebraic_variety
dbo:wikiPageWikiLink
dbr:System_of_polynomial_equations
Subject Item
dbr:Regular_chain
dbo:wikiPageWikiLink
dbr:System_of_polynomial_equations
Subject Item
dbr:Gröbner_basis
dbo:wikiPageWikiLink
dbr:System_of_polynomial_equations
Subject Item
dbr:Wu's_method_of_characteristic_set
dbo:wikiPageWikiLink
dbr:System_of_polynomial_equations
Subject Item
dbr:Solving_systems_of_polynomial_equations
dbo:wikiPageWikiLink
dbr:System_of_polynomial_equations
dbo:wikiPageRedirects
dbr:System_of_polynomial_equations
Subject Item
dbr:System_of_polynomial_equations
rdf:type
yago:WikicatPolynomials yago:MathematicalStatement106732169 yago:MathematicalRelation113783581 yago:Polynomial105861855 yago:Message106598915 yago:Function113783816 yago:Abstraction100002137 yago:Statement106722453 yago:WikicatEquations yago:Relation100031921 yago:Communication100033020 yago:Equation106669864
rdfs:label
Sistema de ecuaciones algebraicas System of polynomial equations Sistem persamaan polinomial Système d'équations algébriques
rdfs:comment
Sistem persamaan polinomial (terkadang hanya sistem polinomial) adalah himpunan persamaan simultan f1 = 0, ..., fh = 0 dimana fi adalah polinomial dalam beberapa variabel, misalnya x1, ..., xn, atas beberapa bidang k. Solusi dari sistem polinomial adalah sekumpulan nilai untuk xi yang termasuk dalam beberapa ekstensi bidang K dari k , dan membuat semua persamaan menjadi benar. Jika k adalah bidang bilangan rasional, K umumnya diasumsikan sebagai bidang bilangan kompleks, karena setiap solusi milik ekstensi bidang dari k , yang isomorfik ke subkolom dari bilangan kompleks. A system of polynomial equations (sometimes simply a polynomial system) is a set of simultaneous equations f1 = 0, ..., fh = 0 where the fi are polynomials in several variables, say x1, ..., xn, over some field k. A solution of a polynomial system is a set of values for the xis which belong to some algebraically closed field extension K of k, and make all equations true. When k is the field of rational numbers, K is generally assumed to be the field of complex numbers, because each solution belongs to a field extension of k, which is isomorphic to a subfield of the complex numbers. En mathématiques, un système d'équations algébriques est un ensemble d'équations polynomiales f1 = 0, ..., fh = 0 où les fi sont des polynômes de plusieurs variables (ou indéterminées), x1, ..., xn, à coefficients pris dans un corps ou un anneau k. Une « solution » est un ensemble de valeurs à substituer aux indéterminées annulant toutes les équations du système. Généralement les solutions peuvent être cherchées dans une extension du corps k comme la clôture algébrique de ce corps (ou la clôture algébrique du corps des fractions de k celui-ci est un anneau). En matemáticas, un sistema de ecuaciones algebraicas es un conjunto de ecuaciones con más de una incógnita que conforman un problema matemático que consiste en encontrar los valores de las incógnitas que satisfacen dichas operaciones. Las incógnitas se suelen representar utilizando las últimas letras del alfabeto latino, o si son demasiadas, con subíndices.
foaf:depiction
n20:BarthSextic.png
dcterms:subject
dbc:Computer_algebra dbc:Equations dbc:Polynomials dbc:Algebraic_geometry dbc:Algebra
dbo:wikiPageID
27420015
dbo:wikiPageRevisionID
1120311132
dbo:wikiPageWikiLink
dbr:Polynomial dbr:Algebraic_number_field dbr:Monomial_order n4:BarthSextic.png dbr:Algebraically_closed_field dbr:Complex_number dbr:Multiplicity_(mathematics) dbr:Dimension_of_an_algebraic_variety dbr:Algebraic_variety dbr:Simultaneous_equations dbr:Homotopy dbr:Algebraically_closed dbr:Singular_point_of_an_algebraic_variety dbr:Fundamental_theorem_of_algebra dbr:Formal_derivative dbr:Cylindrical_algebraic_decomposition dbr:Algebraic_geometry dbc:Polynomials dbr:Trigonometric_functions dbc:Equations dbr:Primary_decomposition dbr:Connected_component_(topology) dbr:Field_(mathematics) dbr:MPSolve dbr:Inconsistent_equations dbr:Double_exponential_function dbr:Trigonometric_polynomial dbr:Indeterminate_(variable) dbr:Elimination_theory dbr:Tuple dbr:Characteristic_zero dbr:Zero-dimensional_space dbr:Gröbner_basis dbc:Algebraic_geometry dbr:System_of_nonlinear_equations dbr:Systems_of_polynomial_inequalities dbr:Barth_surface dbr:Finite_field dbr:Modular_arithmetic dbr:Field_extension dbr:Wu's_method_of_characteristic_set dbr:Aberth_method dbr:Linear_combination dbr:Bézout's_theorem dbr:Underdetermined_system dbr:Newton's_method dbr:Triangular_decomposition dbr:Regular_chain dbr:Hilbert's_Nullstellensatz dbr:Krull's_principal_ideal_theorem dbr:Algebraic_closure dbc:Algebra dbr:Real_number dbr:Radical_of_an_ideal dbr:Floating_point dbr:Overdetermined_system dbr:Diophantine_equation dbr:Abel–Ruffini_theorem dbr:Maple_(software) dbr:Regular_semi-algebraic_system dbr:Rational_number dbr:Closed-form_expression dbr:Commutative_algebra dbr:Descartes'_rule_of_signs dbr:Computational_complexity dbc:Computer_algebra dbr:Optimization_(mathematics)
owl:sameAs
dbpedia-fr:Système_d'équations_algébriques wikidata:Q7663735 dbpedia-es:Sistema_de_ecuaciones_algebraicas yago-res:System_of_polynomial_equations dbpedia-id:Sistem_persamaan_polinomial freebase:m.0c01fc2 wikidata:Q100617056 n23:4vzTd
dbp:wikiPageUsesTemplate
dbt:Mvar dbt:Pi dbt:Citation_needed dbt:Short_description dbt:Math dbt:Sfrac dbt:Anchor dbt:Cite_book dbt:As_of dbt:Sup dbt:Refend dbt:Reflist dbt:Refbegin dbt:Main dbt:Sub
dbo:thumbnail
n20:BarthSextic.png?width=300
dbo:abstract
En matemáticas, un sistema de ecuaciones algebraicas es un conjunto de ecuaciones con más de una incógnita que conforman un problema matemático que consiste en encontrar los valores de las incógnitas que satisfacen dichas operaciones. En un sistema de ecuaciones algebraicas, las incógnitas son valores numéricos menores a la constante (o más generalmente elementos de un cuerpo sobre el que se plantean las ecuaciones), mientras que en una ecuación diferencial las incógnitas son funciones o distribuciones de un cierto conjunto definido de antemano. Una solución de dicho sistema es por tanto, un valor o una función que substituida en las ecuaciones del sistema hace que éstas se cumplan automáticamente sin que se llegue a una contradicción. En otras palabras el valor que reemplazamos en las incógnitas debe hacer cumplir la igualdad del sistema. Las incógnitas se suelen representar utilizando las últimas letras del alfabeto latino, o si son demasiadas, con subíndices. Sistem persamaan polinomial (terkadang hanya sistem polinomial) adalah himpunan persamaan simultan f1 = 0, ..., fh = 0 dimana fi adalah polinomial dalam beberapa variabel, misalnya x1, ..., xn, atas beberapa bidang k. Solusi dari sistem polinomial adalah sekumpulan nilai untuk xi yang termasuk dalam beberapa ekstensi bidang K dari k , dan membuat semua persamaan menjadi benar. Jika k adalah bidang bilangan rasional, K umumnya diasumsikan sebagai bidang bilangan kompleks, karena setiap solusi milik ekstensi bidang dari k , yang isomorfik ke subkolom dari bilangan kompleks. Artikel ini adalah tentang metode untuk memecahkan, yaitu menemukan semua solusi atau menjelaskannya. Karena metode ini dirancang untuk diimplementasikan di komputer, Penekanan diberikan pada bidang k yang komputasi (termasuk pengujian persamaan) mudah dan efisien, yaitu bidang bilangan rasional s dan . Mencari solusi yang termasuk dalam rangkaian tertentu merupakan masalah yang umumnya jauh lebih sulit, dan berada di luar cakupan artikel ini, kecuali untuk kasus solusi di medan hingga tertentu. Untuk kasus solusi yang semua komponennya adalah bilangan bulat atau bilangan rasional, lihat . * l * * s En mathématiques, un système d'équations algébriques est un ensemble d'équations polynomiales f1 = 0, ..., fh = 0 où les fi sont des polynômes de plusieurs variables (ou indéterminées), x1, ..., xn, à coefficients pris dans un corps ou un anneau k. Une « solution » est un ensemble de valeurs à substituer aux indéterminées annulant toutes les équations du système. Généralement les solutions peuvent être cherchées dans une extension du corps k comme la clôture algébrique de ce corps (ou la clôture algébrique du corps des fractions de k celui-ci est un anneau). L'étude de l'ensemble des solutions des systèmes algébriques forme la branche des mathématiques appelée géométrie algébrique. A system of polynomial equations (sometimes simply a polynomial system) is a set of simultaneous equations f1 = 0, ..., fh = 0 where the fi are polynomials in several variables, say x1, ..., xn, over some field k. A solution of a polynomial system is a set of values for the xis which belong to some algebraically closed field extension K of k, and make all equations true. When k is the field of rational numbers, K is generally assumed to be the field of complex numbers, because each solution belongs to a field extension of k, which is isomorphic to a subfield of the complex numbers. This article is about the methods for solving, that is, finding all solutions or describing them. As these methods are designed for being implemented in a computer, emphasis is given on fields k in which computation (including equality testing) is easy and efficient, that is the field of rational numbers and finite fields. Searching for solutions that belong to a specific set is a problem which is generally much more difficult, and is outside the scope of this article, except for the case of the solutions in a given finite field. For the case of solutions of which all components are integers or rational numbers, see Diophantine equation.
gold:hypernym
dbr:Set
prov:wasDerivedFrom
wikipedia-en:System_of_polynomial_equations?oldid=1120311132&ns=0
dbo:wikiPageLength
33641
foaf:isPrimaryTopicOf
wikipedia-en:System_of_polynomial_equations
Subject Item
dbr:Diophantine_equation
dbo:wikiPageWikiLink
dbr:System_of_polynomial_equations
Subject Item
dbr:Polynomial
dbo:wikiPageWikiLink
dbr:System_of_polynomial_equations
Subject Item
dbr:Solvers_for_polynomial_systems
dbo:wikiPageWikiLink
dbr:System_of_polynomial_equations
dbo:wikiPageRedirects
dbr:System_of_polynomial_equations
Subject Item
dbr:Free_abelian_group
dbo:wikiPageWikiLink
dbr:System_of_polynomial_equations
Subject Item
dbr:Algorithms_for_numerically_solving_systems_of_polynomial_equations
dbo:wikiPageWikiLink
dbr:System_of_polynomial_equations
dbo:wikiPageRedirects
dbr:System_of_polynomial_equations
Subject Item
dbr:Algorithms_for_solving_systems_of_polynomial_equations
dbo:wikiPageWikiLink
dbr:System_of_polynomial_equations
dbo:wikiPageRedirects
dbr:System_of_polynomial_equations
Subject Item
dbr:Methods_for_numerically_solving_systems_of_polynomial_equations
dbo:wikiPageWikiLink
dbr:System_of_polynomial_equations
dbo:wikiPageRedirects
dbr:System_of_polynomial_equations
Subject Item
dbr:Methods_for_solving_systems_of_polynomial_equations
dbo:wikiPageWikiLink
dbr:System_of_polynomial_equations
dbo:wikiPageRedirects
dbr:System_of_polynomial_equations
Subject Item
dbr:Variety_(universal_algebra)
dbo:wikiPageWikiLink
dbr:System_of_polynomial_equations
Subject Item
dbr:System_of_bilinear_equations
dbo:wikiPageWikiLink
dbr:System_of_polynomial_equations
Subject Item
dbr:Tensor_rank_decomposition
dbo:wikiPageWikiLink
dbr:System_of_polynomial_equations
Subject Item
dbr:Theory_of_equations
dbo:wikiPageWikiLink
dbr:System_of_polynomial_equations
Subject Item
dbr:Multi-homogeneous_Bézout_theorem
dbo:wikiPageWikiLink
dbr:System_of_polynomial_equations
Subject Item
dbr:Teo_Mora
dbo:wikiPageWikiLink
dbr:System_of_polynomial_equations
Subject Item
dbr:Polynomial_equation_system
dbo:wikiPageWikiLink
dbr:System_of_polynomial_equations
dbo:wikiPageRedirects
dbr:System_of_polynomial_equations
Subject Item
dbr:Polynomial_system
dbo:wikiPageWikiLink
dbr:System_of_polynomial_equations
dbo:wikiPageRedirects
dbr:System_of_polynomial_equations
Subject Item
dbr:Polynomial_system_of_equations
dbo:wikiPageWikiLink
dbr:System_of_polynomial_equations
dbo:wikiPageRedirects
dbr:System_of_polynomial_equations
Subject Item
dbr:Polynomial_system_solving
dbo:wikiPageWikiLink
dbr:System_of_polynomial_equations
dbo:wikiPageRedirects
dbr:System_of_polynomial_equations
Subject Item
dbr:Polynomial_systems_of_equations
dbo:wikiPageWikiLink
dbr:System_of_polynomial_equations
dbo:wikiPageRedirects
dbr:System_of_polynomial_equations
Subject Item
dbr:Software_for_solving_polynomial_systems
dbo:wikiPageWikiLink
dbr:System_of_polynomial_equations
dbo:wikiPageRedirects
dbr:System_of_polynomial_equations
Subject Item
wikipedia-en:System_of_polynomial_equations
foaf:primaryTopic
dbr:System_of_polynomial_equations