This HTML5 document contains 87 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n18https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Semigroup_with_two_elements
rdf:type
yago:Whole100003553 yago:Artifact100021939 yago:PhysicalEntity100001930 yago:Structure104341686 yago:Object100002684 owl:Thing yago:YagoGeoEntity yago:WikicatAlgebraicStructures yago:YagoPermanentlyLocatedEntity
rdfs:label
Semigroup with two elements
rdfs:comment
In mathematics, a semigroup with two elements is a semigroup for which the cardinality of the underlying set is two. There are exactly five distinct nonisomorphic semigroups having two elements: * O2, the null semigroup of order two, * LO2 and RO2, the left zero semigroup of order two and right zero semigroup of order two, respectively, * ({0,1}, ∧) (where "∧" is the logical connective "and"), or equivalently the set {0,1} under multiplication: the only semilattice with two elements and the only non-null semigroup with zero of order two, also a monoid, and ultimately the two-element Boolean algebra, * (Z2, +2) (where Z2 = {0,1} and "+2" is "addition modulo 2"), or equivalently ({0,1}, ⊕) (where "⊕" is the logical connective "xor"), or equivalently the set {−1,1} under multiplication: t
dct:subject
dbc:Algebraic_structures dbc:Semigroup_theory
dbo:wikiPageID
22717084
dbo:wikiPageRevisionID
1121809382
dbo:wikiPageWikiLink
dbr:Antiisomorphic dbr:Null_semigroup dbr:Trivial_semigroup dbc:Algebraic_structures dbr:Left_zero_semigroup dbr:Symmetric_group dbr:Group_(mathematics) dbr:Distributive_lattice dbr:Logical_conjunction dbr:Mathematics dbr:Matrix_multiplication dbr:Lattice_(order) dbc:Semigroup_theory dbr:Exclusive_or dbr:Complemented_lattice dbr:Truth dbr:Semigroup_with_three_elements dbr:On-Line_Encyclopedia_of_Integer_Sequences dbr:Right_zero_semigroup dbr:Band_(mathematics) dbr:False_(logic) dbr:Distinct_(mathematics) dbr:Two-element_Boolean_algebra dbr:Band_(algebra) dbr:Cyclic_group dbr:Cayley_table dbr:Associative dbr:Inverse_semigroup dbr:Isomorphic dbr:Semigroup dbr:Semilattice dbr:Truth_value dbr:Unit_element dbr:Special_classes_of_semigroups dbr:Cardinality dbr:Semigroup_with_one_element dbr:Logic dbr:Binary_operation dbr:Underlying_set dbr:Monoid dbr:Empty_semigroup dbr:Logical_connective dbr:Idempotent dbr:Linear_order dbr:Matrix_(mathematics) dbr:Commutativity
owl:sameAs
yago-res:Semigroup_with_two_elements wikidata:Q7449423 freebase:m.05z_658 n18:4ucdX
dbp:wikiPageUsesTemplate
dbt:OEIS2C dbt:Main dbt:Authority_control dbt:Use_dmy_dates dbt:Nowrap_end dbt:Reflist dbt:Nowrap_begin
dbo:abstract
In mathematics, a semigroup with two elements is a semigroup for which the cardinality of the underlying set is two. There are exactly five distinct nonisomorphic semigroups having two elements: * O2, the null semigroup of order two, * LO2 and RO2, the left zero semigroup of order two and right zero semigroup of order two, respectively, * ({0,1}, ∧) (where "∧" is the logical connective "and"), or equivalently the set {0,1} under multiplication: the only semilattice with two elements and the only non-null semigroup with zero of order two, also a monoid, and ultimately the two-element Boolean algebra, * (Z2, +2) (where Z2 = {0,1} and "+2" is "addition modulo 2"), or equivalently ({0,1}, ⊕) (where "⊕" is the logical connective "xor"), or equivalently the set {−1,1} under multiplication: the only group of order two. The semigroups LO2 and RO2 are antiisomorphic. O2, ({0,1}, ∧) and (Z2, +2) are commutative, and LO2 and RO2 are noncommutative. LO2, RO2 and ({0,1}, ∧) are bands and also inverse semigroups.
gold:hypernym
dbr:Semigroup
prov:wasDerivedFrom
wikipedia-en:Semigroup_with_two_elements?oldid=1121809382&ns=0
dbo:wikiPageLength
11753
foaf:isPrimaryTopicOf
wikipedia-en:Semigroup_with_two_elements
Subject Item
dbr:Aperiodic_semigroup
dbo:wikiPageWikiLink
dbr:Semigroup_with_two_elements
Subject Item
dbr:Empty_semigroup
dbo:wikiPageWikiLink
dbr:Semigroup_with_two_elements
Subject Item
dbr:Semigroup
dbo:wikiPageWikiLink
dbr:Semigroup_with_two_elements
Subject Item
dbr:Semigroup_with_three_elements
dbo:wikiPageWikiLink
dbr:Semigroup_with_two_elements
Subject Item
dbr:Trivial_semigroup
dbo:wikiPageWikiLink
dbr:Semigroup_with_two_elements
Subject Item
dbr:Semigroup_with_2_elements
dbo:wikiPageWikiLink
dbr:Semigroup_with_two_elements
dbo:wikiPageRedirects
dbr:Semigroup_with_two_elements
Subject Item
dbr:Semigroups_with_two_elements
dbo:wikiPageWikiLink
dbr:Semigroup_with_two_elements
dbo:wikiPageRedirects
dbr:Semigroup_with_two_elements
Subject Item
wikipedia-en:Semigroup_with_two_elements
foaf:primaryTopic
dbr:Semigroup_with_two_elements