This HTML5 document contains 106 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dbpedia-dehttp://de.dbpedia.org/resource/
dctermshttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
n27http://dbpedia.org/resource/File:
foafhttp://xmlns.com/foaf/0.1/
dbpedia-kohttp://ko.dbpedia.org/resource/
n19https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
n18http://commons.wikimedia.org/wiki/Special:FilePath/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
dbpedia-ithttp://it.dbpedia.org/resource/
dbpedia-frhttp://fr.dbpedia.org/resource/
n20https://archive.org/details/
wikipedia-enhttp://en.wikipedia.org/wiki/
dbphttp://dbpedia.org/property/
provhttp://www.w3.org/ns/prov#
dbchttp://dbpedia.org/resource/Category:
xsdhhttp://www.w3.org/2001/XMLSchema#
wikidatahttp://www.wikidata.org/entity/
goldhttp://purl.org/linguistics/gold/
dbrhttp://dbpedia.org/resource/
n21https://archive.org/details/computationalphy00vese_143/page/
n24http://www.physics.udel.edu/~bnikolic/teaching/phys660/numerical_ode/

Statements

Subject Item
dbr:Newton–Størmer–Verlet
dbo:wikiPageWikiLink
dbr:Semi-implicit_Euler_method
dbo:wikiPageRedirects
dbr:Semi-implicit_Euler_method
Subject Item
dbr:Euler-Cromer_algorithm
dbo:wikiPageWikiLink
dbr:Semi-implicit_Euler_method
dbo:wikiPageRedirects
dbr:Semi-implicit_Euler_method
Subject Item
dbr:Euler–Cromer_algorithm
dbo:wikiPageWikiLink
dbr:Semi-implicit_Euler_method
dbo:wikiPageRedirects
dbr:Semi-implicit_Euler_method
Subject Item
dbr:List_of_things_named_after_Leonhard_Euler
dbo:wikiPageWikiLink
dbr:Semi-implicit_Euler_method
Subject Item
dbr:List_of_numerical_analysis_topics
dbo:wikiPageWikiLink
dbr:Semi-implicit_Euler_method
Subject Item
dbr:Semi-implicit_Euler_method
rdf:type
yago:MathematicalStatement106732169 yago:Equation106669864 dbo:VideoGame yago:Statement106722453 yago:Message106598915 yago:Communication100033020 yago:WikicatNumericalDifferentialEquations yago:DifferentialEquation106670521 yago:Abstraction100002137
rdfs:label
반-암시적 오일러 방법 Méthode d'Euler semi-implicite Semi-implicit Euler method Symplektisches Eulerverfahren Metodo di Eulero semi-implicito
rdfs:comment
In der numerischen Mathematik ist das symplektische Eulerverfahren eine Modifikation des Eulerverfahrens zur Lösung der Hamiltonschen Gleichungen, gewisser Systeme gewöhnlicher Differentialgleichungen, die in der klassischen Mechanik vorkommen. Es hat denselben Aufwand wie das Eulerverfahren, liefert aber dennoch bessere Ergebnisse. Das symplektische Eulerverfahren kann als Verknüpfung des expliziten und des impliziten Eulerverfahrens angesehen werden. 수학에서, 반-암시적 오일러 방법 또는 사교 오일러, 반-명시적 오일러, 오일러-크로머, 그리고 뉴턴-스토머-베렛(NSV) 방법은 고전역학의 상미분방정식의 계인 해밀턴 방정식을 풀기 위한 오일러 방법의 수정이다. 이것은 사교 적분이고 따라서 일반적인 오일러 방법보다 더 좋은 결과를 얻는다. En mathématiques, la méthode d'Euler semi-implicite, également connue sous le nom de méthode d'Euler symplectique, méthode d'Euler semi-explicite, Euler–Cromer, et Newton–Størmer–Verlet (NSV), est une variante de la méthode d'Euler initialement conçue pour résoudre les équations de la mécanique hamiltonienne, un système d'équations différentielles ordinaires apparaissant en mécanique newtonienne. In matematica il metodo di Eulero semi-implicito, detto anche Eulero simplettico, Eulero semi-esplicito, Eulero-Cromer, e Newton-Størmer-Verlet (NSV), è una variante del metodo di Eulero usato per risolvere equazioni di Hamilton. È un , pertanto consente di ottenere risultati migliori rispetto al metodo di Eulero semplice. In mathematics, the semi-implicit Euler method, also called symplectic Euler, semi-explicit Euler, Euler–Cromer, and Newton–Størmer–Verlet (NSV), is a modification of the Euler method for solving Hamilton's equations, a system of ordinary differential equations that arises in classical mechanics. It is a symplectic integrator and hence it yields better results than the standard Euler method.
foaf:depiction
n18:Symplectic_Euler_stability_region.jpeg
dcterms:subject
dbc:Numerical_differential_equations
dbo:wikiPageID
9813143
dbo:wikiPageRevisionID
1117711656
dbo:wikiPageWikiLink
dbr:Euler_integration dbr:Leapfrog_integration dbr:Symplectic_integrator dbr:Ordinary_differential_equation dbr:Classical_mechanics dbr:Hamilton's_equations dbr:University_of_Delaware dbr:Differential_equation dbr:Verlet_integration dbr:Numerical_ordinary_differential_equations dbr:Spring_(device) dbr:Energy_drift dbr:Hamiltonian_mechanics dbc:Numerical_differential_equations dbr:Discrete_mathematics dbr:Hooke's_law n27:Symplectic_Euler_stability_region.jpeg dbr:Determinant
dbo:wikiPageExternalLink
n20:computationalphy00vese_143%7Curl-access= n21:n125 n24:node2.html%7Curl-status=live%7Caccessdate=2021-09-29
owl:sameAs
yago-res:Semi-implicit_Euler_method wikidata:Q5475314 freebase:m.02ps_9z dbpedia-ko:반-암시적_오일러_방법 dbpedia-fr:Méthode_d'Euler_semi-implicite n19:4jvEL dbpedia-it:Metodo_di_Eulero_semi-implicito dbpedia-de:Symplektisches_Eulerverfahren
dbp:wikiPageUsesTemplate
dbt:Numerical_integrators dbt:Cite_web dbt:Cite_book dbt:Citation_needed
dbo:thumbnail
n18:Symplectic_Euler_stability_region.jpeg?width=300
dbo:abstract
En mathématiques, la méthode d'Euler semi-implicite, également connue sous le nom de méthode d'Euler symplectique, méthode d'Euler semi-explicite, Euler–Cromer, et Newton–Størmer–Verlet (NSV), est une variante de la méthode d'Euler initialement conçue pour résoudre les équations de la mécanique hamiltonienne, un système d'équations différentielles ordinaires apparaissant en mécanique newtonienne. In mathematics, the semi-implicit Euler method, also called symplectic Euler, semi-explicit Euler, Euler–Cromer, and Newton–Størmer–Verlet (NSV), is a modification of the Euler method for solving Hamilton's equations, a system of ordinary differential equations that arises in classical mechanics. It is a symplectic integrator and hence it yields better results than the standard Euler method. 수학에서, 반-암시적 오일러 방법 또는 사교 오일러, 반-명시적 오일러, 오일러-크로머, 그리고 뉴턴-스토머-베렛(NSV) 방법은 고전역학의 상미분방정식의 계인 해밀턴 방정식을 풀기 위한 오일러 방법의 수정이다. 이것은 사교 적분이고 따라서 일반적인 오일러 방법보다 더 좋은 결과를 얻는다. In der numerischen Mathematik ist das symplektische Eulerverfahren eine Modifikation des Eulerverfahrens zur Lösung der Hamiltonschen Gleichungen, gewisser Systeme gewöhnlicher Differentialgleichungen, die in der klassischen Mechanik vorkommen. Es hat denselben Aufwand wie das Eulerverfahren, liefert aber dennoch bessere Ergebnisse. Das symplektische Eulerverfahren kann als Verknüpfung des expliziten und des impliziten Eulerverfahrens angesehen werden. Generell bezeichnet man ein numerisches Rechenverfahren als symplektisch, wenn es in der Anwendung auf ein Hamilton-System eine symplektische Abbildung beschreibt.Symplektische Verfahren erhalten die symplektische Struktur. Das ist wünschenswert, weil der symplektisch ist und die Verfahren aufgrund ihrer Symplektizität gewisse Erhaltungsgrößen des Flusses ebenfalls erhalten. In matematica il metodo di Eulero semi-implicito, detto anche Eulero simplettico, Eulero semi-esplicito, Eulero-Cromer, e Newton-Størmer-Verlet (NSV), è una variante del metodo di Eulero usato per risolvere equazioni di Hamilton. È un , pertanto consente di ottenere risultati migliori rispetto al metodo di Eulero semplice.
gold:hypernym
dbr:Modification
prov:wasDerivedFrom
wikipedia-en:Semi-implicit_Euler_method?oldid=1117711656&ns=0
dbo:wikiPageLength
6854
foaf:isPrimaryTopicOf
wikipedia-en:Semi-implicit_Euler_method
Subject Item
dbr:Backward_Euler_method
dbo:wikiPageWikiLink
dbr:Semi-implicit_Euler_method
Subject Item
dbr:Asynchronous_multi-body_framework
dbo:wikiPageWikiLink
dbr:Semi-implicit_Euler_method
Subject Item
dbr:Newton-Størmer-Verlet
dbo:wikiPageWikiLink
dbr:Semi-implicit_Euler_method
dbo:wikiPageRedirects
dbr:Semi-implicit_Euler_method
Subject Item
dbr:Verlet_integration
dbo:wikiPageWikiLink
dbr:Semi-implicit_Euler_method
Subject Item
dbr:Euler_method
dbo:wikiPageWikiLink
dbr:Semi-implicit_Euler_method
Subject Item
dbr:Streamline_upwind_Petrov–Galerkin_pressure-stabilizing_Petrov–Galerkin_formulation_for_incompressible_Navier–Stokes_equations
dbo:wikiPageWikiLink
dbr:Semi-implicit_Euler_method
Subject Item
dbr:Semiimplicit_Euler_method
dbo:wikiPageWikiLink
dbr:Semi-implicit_Euler_method
dbo:wikiPageRedirects
dbr:Semi-implicit_Euler_method
Subject Item
dbr:Newton-stormer-verlet
dbo:wikiPageWikiLink
dbr:Semi-implicit_Euler_method
dbo:wikiPageRedirects
dbr:Semi-implicit_Euler_method
Subject Item
dbr:Newton_stormer_verlet
dbo:wikiPageWikiLink
dbr:Semi-implicit_Euler_method
dbo:wikiPageRedirects
dbr:Semi-implicit_Euler_method
Subject Item
dbr:Newton–Stormer–Verlet
dbo:wikiPageWikiLink
dbr:Semi-implicit_Euler_method
dbo:wikiPageRedirects
dbr:Semi-implicit_Euler_method
Subject Item
dbr:Symplectic_Euler
dbo:wikiPageWikiLink
dbr:Semi-implicit_Euler_method
dbo:wikiPageRedirects
dbr:Semi-implicit_Euler_method
Subject Item
dbr:Symplectic_Euler_method
dbo:wikiPageWikiLink
dbr:Semi-implicit_Euler_method
dbo:wikiPageRedirects
dbr:Semi-implicit_Euler_method
Subject Item
dbr:Newton-Stormer-Verlet
dbo:wikiPageWikiLink
dbr:Semi-implicit_Euler_method
dbo:wikiPageRedirects
dbr:Semi-implicit_Euler_method
Subject Item
dbr:Semi-explicit_Euler
dbo:wikiPageWikiLink
dbr:Semi-implicit_Euler_method
dbo:wikiPageRedirects
dbr:Semi-implicit_Euler_method
Subject Item
dbr:Semi-implicit_Euler
dbo:wikiPageWikiLink
dbr:Semi-implicit_Euler_method
dbo:wikiPageRedirects
dbr:Semi-implicit_Euler_method
Subject Item
dbr:Semi_explicit_Euler
dbo:wikiPageWikiLink
dbr:Semi-implicit_Euler_method
dbo:wikiPageRedirects
dbr:Semi-implicit_Euler_method
Subject Item
dbr:Semi_implicit_euler
dbo:wikiPageWikiLink
dbr:Semi-implicit_Euler_method
dbo:wikiPageRedirects
dbr:Semi-implicit_Euler_method
Subject Item
dbr:Semi–implicit_Euler
dbo:wikiPageWikiLink
dbr:Semi-implicit_Euler_method
dbo:wikiPageRedirects
dbr:Semi-implicit_Euler_method
Subject Item
wikipedia-en:Semi-implicit_Euler_method
foaf:primaryTopic
dbr:Semi-implicit_Euler_method