This HTML5 document contains 60 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n16https://global.dbpedia.org/id/
n10http://dbpedia.org/resource/Combinatorics:
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
freebasehttp://rdf.freebase.com/ns/
n17http://www.ams.org/notices/200911/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbchttp://dbpedia.org/resource/Category:
provhttp://www.w3.org/ns/prov#
dbphttp://dbpedia.org/property/
xsdhhttp://www.w3.org/2001/XMLSchema#
goldhttp://purl.org/linguistics/gold/
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Gian-Carlo_Rota
dbo:wikiPageWikiLink
dbr:Rota–Baxter_algebra
Subject Item
dbr:Glen_E._Baxter
dbo:wikiPageWikiLink
dbr:Rota–Baxter_algebra
Subject Item
n10:_The_Rota_Way
dbo:wikiPageWikiLink
dbr:Rota–Baxter_algebra
Subject Item
dbr:Butcher_group
dbo:wikiPageWikiLink
dbr:Rota–Baxter_algebra
Subject Item
dbr:Rota-Baxter_algebra
dbo:wikiPageWikiLink
dbr:Rota–Baxter_algebra
dbo:wikiPageRedirects
dbr:Rota–Baxter_algebra
Subject Item
dbr:Rota–Baxter_algebra
rdf:type
yago:Content105809192 yago:WikicatAlgebras yago:KnowledgeDomain105999266 yago:Mathematics106000644 yago:Science105999797 yago:Discipline105996646 yago:Algebra106012726 yago:PureMathematics106003682 yago:Cognition100023271 yago:PsychologicalFeature100023100 yago:Abstraction100002137
rdfs:label
Rota–Baxter algebra
rdfs:comment
In mathematics, a Rota–Baxter algebra is an associative algebra, together with a particular linear map R which satisfies the Rota–Baxter identity. It appeared first in the work of the American mathematician Glen E. Baxter in the realm of probability theory. Baxter's work was further explored from different angles by Gian-Carlo Rota, Pierre Cartier, and , among others. Baxter’s derivation of this identity that later bore his name emanated from some of the fundamental results of the famous probabilist Frank Spitzer in random walk theory.
dcterms:subject
dbc:Combinatorics dbc:Algebras
dbo:wikiPageID
21091721
dbo:wikiPageRevisionID
1102483824
dbo:wikiPageWikiLink
dbr:Random_walk dbr:Yang–Baxter_equation dbr:Gian-Carlo_Rota dbr:Frederic_V._Atkinson dbr:Integration_by_parts dbr:Rodney_Baxter dbr:Glen_E._Baxter dbr:Linear_map dbc:Combinatorics dbr:Frank_Spitzer dbr:Chen-Ning_Yang dbr:Probability_theory dbr:Mathematics dbc:Algebras dbr:Dendriform_algebra dbr:Integral dbr:Continuous_functions dbr:Pierre_Cartier_(mathematician) dbr:Associative_algebra
dbo:wikiPageExternalLink
n17:rtx091101436p.pdf
owl:sameAs
freebase:m.05c2tqf n16:4uj7y wikidata:Q7370348
dbp:wikiPageUsesTemplate
dbt:Empty_section dbt:Reflist
dbo:abstract
In mathematics, a Rota–Baxter algebra is an associative algebra, together with a particular linear map R which satisfies the Rota–Baxter identity. It appeared first in the work of the American mathematician Glen E. Baxter in the realm of probability theory. Baxter's work was further explored from different angles by Gian-Carlo Rota, Pierre Cartier, and , among others. Baxter’s derivation of this identity that later bore his name emanated from some of the fundamental results of the famous probabilist Frank Spitzer in random walk theory. In the 1980s, the Rota-Baxter operator of weight 0 in the context of Lie algebras was rediscovered as the operator form of the classical Yang–Baxter equation, named after the well-known physicists Chen-Ning Yang and Rodney Baxter. The study of Rota–Baxter algebras experienced a renaissance this century, beginning with several developments, in the algebraic approach to renormalization of perturbative quantum field theory, , associative analogue of the classical Yang–Baxter equation and mixable shuffle product constructions.
gold:hypernym
dbr:Algebra
prov:wasDerivedFrom
wikipedia-en:Rota–Baxter_algebra?oldid=1102483824&ns=0
dbo:wikiPageLength
7045
foaf:isPrimaryTopicOf
wikipedia-en:Rota–Baxter_algebra
Subject Item
dbr:Baxter_operator
dbo:wikiPageWikiLink
dbr:Rota–Baxter_algebra
dbo:wikiPageRedirects
dbr:Rota–Baxter_algebra
Subject Item
dbr:Rota-Baxter
dbo:wikiPageWikiLink
dbr:Rota–Baxter_algebra
dbo:wikiPageRedirects
dbr:Rota–Baxter_algebra
Subject Item
dbr:Rota–Baxter
dbo:wikiPageWikiLink
dbr:Rota–Baxter_algebra
dbo:wikiPageRedirects
dbr:Rota–Baxter_algebra
Subject Item
wikipedia-en:Rota–Baxter_algebra
foaf:primaryTopic
dbr:Rota–Baxter_algebra