This HTML5 document contains 50 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dcthttp://purl.org/dc/terms/
yago-reshttp://yago-knowledge.org/resource/
dbohttp://dbpedia.org/ontology/
foafhttp://xmlns.com/foaf/0.1/
n14https://web.archive.org/web/20011126072304/http:/modular.fas.harvard.edu/sga/sga/3-3/
n8https://global.dbpedia.org/id/
yagohttp://dbpedia.org/class/yago/
dbthttp://dbpedia.org/resource/Template:
rdfshttp://www.w3.org/2000/01/rdf-schema#
n19http://www.ams.org/online_bks/pspum331/
freebasehttp://rdf.freebase.com/ns/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
wikipedia-enhttp://en.wikipedia.org/wiki/
dbpedia-zhhttp://zh.dbpedia.org/resource/
provhttp://www.w3.org/ns/prov#
dbchttp://dbpedia.org/resource/Category:
dbphttp://dbpedia.org/property/
xsdhhttp://www.w3.org/2001/XMLSchema#
goldhttp://purl.org/linguistics/gold/
wikidatahttp://www.wikidata.org/entity/
dbrhttp://dbpedia.org/resource/

Statements

Subject Item
dbr:Lie_theory
dbo:wikiPageWikiLink
dbr:Root_datum
Subject Item
dbr:Glossary_of_Lie_groups_and_Lie_algebras
dbo:wikiPageWikiLink
dbr:Root_datum
Subject Item
dbr:Deligne–Lusztig_theory
dbo:wikiPageWikiLink
dbr:Root_datum
Subject Item
dbr:Langlands_dual_group
dbo:wikiPageWikiLink
dbr:Root_datum
Subject Item
dbr:Reductive_group
dbo:wikiPageWikiLink
dbr:Root_datum
Subject Item
dbr:Michel_Demazure
dbo:wikiPageWikiLink
dbr:Root_datum
Subject Item
dbr:Root_system
dbo:wikiPageWikiLink
dbr:Root_datum
Subject Item
dbr:Root_datum
rdf:type
yago:WikicatAlgebraicGroups yago:Group100031264 yago:Abstraction100002137
rdfs:label
根資料 Root datum
rdfs:comment
在數學的代數群領域中,根資料(原文為法文donnée radicielle)是一個連通、分裂、可簡約代數群的不變量。對於可簡約代數群,根資料是比根系更精細的不變量,若假設連通性,則它決定了代數群的結構(至多差一個同構)。根資料的定義首見於M. Demazure在SGA III中的闡述,於1970年出版。 In mathematical group theory, the root datum of a connected split reductive algebraic group over a field is a generalization of a root system that determines the group up to isomorphism. They were introduced by Michel Demazure in SGA III, published in 1970.
dct:subject
dbc:Algebraic_groups dbc:Representation_theory
dbo:wikiPageID
6825924
dbo:wikiPageRevisionID
975063220
dbo:wikiPageWikiLink
dbc:Representation_theory dbr:Michel_Demazure dbr:Langlands_dual_group dbr:Root_system dbr:Dynkin_diagram dbr:Algebraically_closed_field dbr:Perfect_pairing dbr:Rank_(linear_algebra) dbr:Reductive_group dbr:Grothendieck's_Séminaire_de_géométrie_algébrique dbr:Group_theory dbr:T._A._Springer dbr:Algebraic_group dbc:Algebraic_groups
dbo:wikiPageExternalLink
n14:index.html n19: n19:pspum331-ptI-1.pdf
owl:sameAs
dbpedia-zh:根資料 n8:4v27W yago-res:Root_datum wikidata:Q7366574 freebase:m.0gr4kg
dbp:wikiPageUsesTemplate
dbt:Isbn
dbo:abstract
In mathematical group theory, the root datum of a connected split reductive algebraic group over a field is a generalization of a root system that determines the group up to isomorphism. They were introduced by Michel Demazure in SGA III, published in 1970. 在數學的代數群領域中,根資料(原文為法文donnée radicielle)是一個連通、分裂、可簡約代數群的不變量。對於可簡約代數群,根資料是比根系更精細的不變量,若假設連通性,則它決定了代數群的結構(至多差一個同構)。根資料的定義首見於M. Demazure在SGA III中的闡述,於1970年出版。
gold:hypernym
dbr:Generalization
prov:wasDerivedFrom
wikipedia-en:Root_datum?oldid=975063220&ns=0
dbo:wikiPageLength
3521
foaf:isPrimaryTopicOf
wikipedia-en:Root_datum
Subject Item
dbr:Root_data
dbo:wikiPageWikiLink
dbr:Root_datum
dbo:wikiPageRedirects
dbr:Root_datum
Subject Item
wikipedia-en:Root_datum
foaf:primaryTopic
dbr:Root_datum